Field Pea
E.A. Oelke1, E.S. Oplinger2, C.V. Hanson1, D.W.
Davis1, D.H. Putnam1, E.I. Fuller1, and C.J. Rosen1
1Departments of Agronomy and Plant Genetics, Horticulture, Agricultural
and Applied Economics, Soil Science and Center for Alternative Plant and Animal
Products. University of Minnesota, St. Paul, MN 55108.
2Department of Agronomy, College of Agricultural and Life Sciences and
Cooperative Extension Service, University of Wisconsin-Madison, WI 53706.
April, 1991.
Translation:
Belorussian
I. History:
Field pea (Pisum sativum L.), a native of Southwest Asia, was among the first
crops cultivated by man. Wild field pea can still be found in Afghanistan, Iran
and Ethiopia. This crop has been long grown in the United States and historically,
field pea was one of Wisconsin's best paying cash crops. In 1909, 78,000 acres were
planted and part of eastern and northeastern Wisconsin led the country in field
pea production. As market prices declined, partly the result of less costly imported
field pea, production declined. Today, the countries leading in field pea production
include the Soviet Union, China, India, Canada, and the United States. In the United
States the largest acreages of field pea are in Washington, Idaho, Oregon, Minnesota
and North Dakota. Plantings of dry field pea in 1989 in the United States was estimated
to be over 30,000 acres and in Canada over 450,000 acres. Cultivation of field pea
has lead to a gradual separation of types: those grown for vegetable use, those
grown for seed and fodder, and the edible podded types which have evolved most recently.
II. Uses:
Over half the domestic field pea production goes to the dry pea market or for planting
seed used by growers of fresh garden, frozen or canning field pea. The smooth, green-
and yellow-seeded varieties are used for human consumption as dry split field pea.
Field pea have high levels of the essential amino acids, lysine and tryptophan,
which are usually low in cereal grains. Consequently, field pea can supplement the
low amount of protein present in food and feed processed from cereal grains. Field
pea are used as protein concentrates for livestock and are popular pigeon feeds.
Field pea flour is valued not only as a vegetable protein source but also, in part,
due to its unique functional properties. The use of vegetable proteins as functional
ingredients in the food industry is increasing and special attention has been given
to the use of field pea because they are already an accepted part of the human diet
throughout the world. The viscosity of slurried pea flours makes them useful in
aqueous food systems.
Field pea also contain proteases, tannins, and lectins, etc. which may reduce livestock
feed gain when present at too high a concentration in a diet. However, it has been
shown that partial or complete replacement of soybean meal with pea screenings (in
a barley diet for hogs) did not reduce growth rate or efficiency of feed conversion.
Field pea may be grown as a forage crop, for hay, pasturage or silage. Field pea
grown in a mixture with oat, barley or triticale yields more dry matter per acre
than a straight pea culture and the field pea stand more erect which makes the crop
easier to harvest. Protein content and feeding value of the forage is increased
by the addition of peas to the seeding mixture. A mixture of 2/3 field pea and 1/3
oat can be seeded with alfalfa or clover as a companion crop. The highly populated
stand reduces weed competition, allows for one or two alfalfa cuttings following
the pealage harvest. Harvest is recommended when field pea is in full bloom and
oat is beginning to head. In southern states, field pea is grown as a fall-sown
cover and green manure crop. As a green manure crop, field pea returns approximately
25 lb/acre of nitrogen (N) to the soil. The cream-colored varieties commonly grown
in Minnesota and Wisconsin are used for feed or as seed for forage production. The
tender shoots of field pea may be cut and used as salad greens. A considerable proportion
of field pea is exported, primarily to Europe.
III. Growth Habit:
Field pea is an annual herbaceous plant and the stems grow to a length of 2 to 4
ft. A leaf consists of one to three pairs of leaflets with a terminal, branched
tendril. Leaves are pale green with a whitish bloom on the surface. At maturity,
the plant is a prostrate vine.
Field pea is of the indeterminate (climbing) type or determinate (bush or dwarf)
type. Flowers are borne on racemes arising in the axils of the leaves and are highly
self-pollinated. In most varieties, the blossoms are reddish-purple or white. Pods
are about three in. long and contain four to nine seeds. Seed may have a green,
yellow or cream colored seed coat and are classified as such.
IV. Environment Requirements:
A. Climate:
A cool growing season is necessary for optimum field pea production (a mean temperature
of 55o to 65oF). Hot weather during flowering causes the flowers
to blast which results in reduced seed set. Field pea seedlings can withstand considerable
frost exposure without damage. If frost injury does occur and the main shoot is
killed, new shoots will originate from nodes below the soil surface. In the Pacific
Northwest, winter varieties of field pea are planted in September. However, these
varieties cannot survive winter temperatures common to Minnesota and Wisconsin.
In the Upper Midwest, field pea is a spring annual with a maturity of 95 to 100
days. Field pea requires the same length of growing season as wheat and is normally
harvested in August. On average, it requires 60 days from planting until bloom,
and 100 days to mature the dry seed. In temperate climates, where winters are severe,
the crop is usually planted in the spring. Where there are little or no frosts,
planting occurs in the late fall and early winter. Because high temperature during
blossoming results in reduced seed set, production of field pea as a summer annual
in the United States is limited to the northern states. In the tropics and subtropics,
field pea is planted at high elevations where the temperatures remain cool. The
moisture requirement for field pea is similar to that for cereal grains. Good rains
and/or early irrigation, and no rain during pod fill and ripening is ideal. Field
pea has been grown successfully throughout the Upper Midwest, particularly in the
northern tier of states.
B. Soil:
Field pea can be grown on a wide range of soil types, from light sandy loams to
heavy clays, but in any soil there must be good drainage as field pea does not tolerate
soggy or water-soaked conditions. The soil pH optimum is 5.5 to 6.5.
C. Seed Preparation and Germination:
Field pea is capable of utilizing bacterially fixed atmospheric nitrogen. The specific
bacterial association for nitrogen fixation in field pea and lentils is with the
bacterium Rhizobium leguminosarium. If field pea is to be grown in a field
for the first time, or have not been grown recently, inoculation of the seed with
the proper Rhizobium, prior to planting, may increase nodulation. Inoculation
may also be beneficial if the soil pH is below 5.7. Once inoculated, seed should
be kept out of direct sunlight and planted as soon as possible because the inoculant
will die if subjected to sunlight or drying. Seed treatments with a fungicide may
harm the inoculant so it is important to first check the seed treatment label. Field
trials have shown that the seed treatment fungicides, Thiram and Captan, do not
significantly affect nodulation.
Pea seed germination rate increases with increasing temperature, but at temperatures
greater than 64oF, the percentage of seeds germinating decreases (Table
1). The percentage of seedlings that emerge is dependent not only on germination,
but on the soil environment. Seed and soil-borne pathogens may have a major effect
on emergence. An extensive amount of research has been conducted on different seed
treatments and treatment methods. Seed treatment with the fungicide, Baytan, can
significantly improve emergence. Fungicide labels should be checked to see if a
particular fungicide can be used on field pea.
Table 1. Emergence of field pea seeds at different soil temperatures:
|
Soil Temperature (oF)
|
41
|
50
|
59
|
68
|
77
|
86
|
95
|
Percent Normal Seedlings
|
89
|
94
|
93
|
93
|
94
|
89
|
0
|
Days to Emergence
|
36
|
14
|
9
|
7
|
6
|
6
|
-
|
Source: Harrington and Minge (1954)
|
V. Cultural Practices:
A. Seedbed Preparation:
Field pea grows best when planted into a seedbed with a minimum amount of residue
on the soil surface. In order to obtain good soil contact with the seed, seedbeds
should be firm and well worked. Avoid seedbeds with large clods and do not work
the soil too fine, or subsequent soil crusting following rains could cause emergence
problems.
Fall plowing is recommended (unless erosion is a problem) to permit early spring
planting. Cultivating the soil prior to planting aids in weed control and helps
warm the soil.
B. Seeding Date:
Being a cool season crop, field pea cannot tolerate hot weather or drought stress
during flowering, thus seeding early is important. Seeding should be as early in
the spring as feasible provided soil temperature in the upper inch is over 40oF.
In Minnesota and Wisconsin this ranges from mid-March to mid-April.
C. Method and Rate of Seeding:
Seed field pea with a grain drill 1 to 2 2 in. deep in rows 6 to 7 in. apart. Care
must be taken to properly adjust the grain drill to prevent cracking the seed (cracked
seed will not germinate).
Rate of seeding depends on the variety to be planted. Large-seeded varieties, such
as Century should be seeded at a rate of 190 lb/acre. On average, a stand count
of nine plants/sq ft is desirable. Field pea is not a strong competitor, therefore,
poor germination or sowing at less than recommended rates may result in severe weed
problems.
D. Fertility and Lime Requirements:
Well nodulated field pea does not require much added nitrogen. However, field pea
grown on soils with less than 20 lb available nitrogen may benefit from 20 to 40
lb of nitrogen applied at seeding (Table 2). Over-application of nitrogen is usually
not profitable and may suppress nitrogen fixation. Nitrogen fixation experiments
utilizing a determinate field pea variety revealed no effect on early pod development,
maximum growth rate or on maximum leaf area by the addition of starter N (NO3)
at 22 or 45 lb/acre. N2 fixation in field pea increased during preflowering
and flowering to a maximum of 9 lb/acre/day at 9 to 10 weeks after seedling emergence.
The total accumulation of fixed N in field pea supplied with zero fertilizer N was
203 lb/acre.
Phosphorous and potassium are required by field pea in relatively large amounts
and they should be added as required on the basis of soil test results (Table 2).
Fertilizer may be broadcast in the spring during seedbed preparation or banded with
the seed. Care must be taken to prevent direct contact between the seed and fertilizer
because germinating field pea are extremely sensitive to high salt concentrations.
Sulphur is also required at a relatively high level to ensure adequate nitrogen
fixation. Sulphur should be added on the basis of soil test recommendations. Application
of lime is recommended on fields with a soil pH of 5.2 or lower.
Table 2. Fertilizer recommendations for filed pea.1
|
|
Nitrogen (N)
|
Phosophorus (P)
|
Potassium (K)
|
Previous Crop
|
Organic Matter
|
Soil Test P
|
Apply (P2O5)
|
Soil Test K
|
Apply (K2O)
|
|
low
|
high
|
---- lbs/A ----
|
---- lbs/A ----
|
Corn, Potatoes, Sugarbeets
|
40
|
20
|
0-10
|
100
|
0-100
|
100
|
Small Grain, Soybeans
|
20
|
0
|
11-20
|
75
|
101-150
|
75
|
Alfalfa, Clover, Black Fallow
|
0
|
0
|
21-40
|
50
|
151-200
|
50
|
|
|
|
40+
|
0
|
200+
|
0
|
1Source: University of Minnesota AG-BU-0519 Soil Test Recommendations
1986.
|
E. Variety selection:
In Minnesota and Wisconsin, varieties of field pea with cream-colored seed are most
commonly grown. Buyers have not encouraged production of green varieties because
of bleaching at harvest time. Century, Lenca. Miranda, Paloma and Trapper produce
seed of satisfactory cooking quality. Procon seed has not been tested for culinary
quality but it may be used as a protein concentrate feed for livestock. Century,
Lenca, Trapper, and Procon are also useful as forage crops and may be grown alone
or in mixture with small grain for silage or feed grain.
Recommended Fieldpea Varieties:
Century - Medium in yield and maturity
with long vines. Seeds are large and cream-colored. Released by Agriculture Canada,
Ottawa in 1960.
Lenca - High in yield and medium
in maturity and vine length. Seeds are medium in size and cream-colored. It is susceptible
to powdery mildew. Released by Agriculture Canada, Morden, in 1979. Production of
certified seed limited to Canada.
Miranda - Very high in yield, early,
and very short. Seeds are very large and cream-colored. It is susceptible to powdery
mildew. Released by Cebeco-Handelsraade of the Netherlands. Seed is distributed
by Wilbur-Ellis Co., Spokane, WA 99206. Sale of seed is regulated by U.S. Variety
Protection Act.
Paloma - Very high in yield, early
and very short. Seeds are large and cream-colored. Released by Cebeco-Handelsraade
of the Netherlands.
Procon - Very high seed yield with
25% protein. This variety is very early, blooming in 59 days and maturing in 99
days. It is short vined but not dwarf with white flowers. Seeds are large and cream-colored
and are used for protein concentrate in livestock rations. Released by Minnesota
Agricultural Experiment Station in 1986.
Trapper - Low yielding, late maturity,
long vined variety. Seeds are small and cream-colored. Suitable for birdfeed markets
that require small, "yellow" seed. Released by Agriculture Canada, Morden
in 1970.
Belinda- Very high seed yield, early,
and very short. Seeds are large and cream-colored. Developed by Cebeco-Handelsraade
of the Netherlands. Seed distributed by International Seeds Inc., Halsey, OR 97348.
Tipu - High seed yield, medium maturity,
with long vines. It has white flowers and yellow or cream-colored seed. It has a
semi-leafless plant type with normal stipules and leaflets reduced to tendrils with
good standability. Released by Agriculture Canada, Morden in 1985. Production of
certified seed is limited to Canada. Distribution by SeCan 512 - 885, Meadowlands
drive, Ottawa, Ont. K2C 3N2.
Victoria - High seed yield, early,
with medium length vines. Seeds are small and cream-colored. Developed by Svalof
A. B. Plant Breeding Station, Sweden. Seed is distributed by Bonis and Company,
Ltd., Lindsay, Ontario. Plant variety protection is pending.
Bellevue - Medium in maturity and
vine length. Seeds are medium size and cream-colored with a smooth seed coat. It
has a higher yield than Century or Trapper and is susceptible to Ascochyta
and Septoria leaf blotch. Seed was developed by Agriculture Canada, and is
distributed by SeCan 512 - 885, Meadowlands Drive, Ottawa, Ont. K2C 3N2.
Helka - Early in maturity and medium
vine length. It has a semi-leafless, bush-type growth habit and is green-seeded.
It is resistant to Ascochyta, Fusarium and BYMV. It was developed by Hankkija,
Finland and distributed by NorFarm Seeds, Box 37, Roseau, MN 56751.
Impala - Medium to early in maturity,
leafless with cream-colored seed. It is resistant to Ascochyta race C and
was developed by Cebeco-Handelsraade (Netherlands). Seed is distributed by International
Seeds, Box 168, Halsey, OR 97348.
Kimo - Early to medium in maturity
with short vines. It has green, medium-large seed and is semi-leafless. It was developed
by Hankkija, Finland and was distributed by NorFarm Seeds, Box 37, Roseau, MN 56751.
Renata - Medium in maturity, with
large cream-colored seed and semi-leafless plant type. It is highly resistant to
Fusarium wilt and is resistant to Ascochyta race C and Downy
Mildew. The variety was released by Cebeco-Handelsraade (Netherlands) and is distributed
by International Seeds, Box 168, Halsey, OR 97348.
Solara - Medium in maturity, short
with very large bluish seed. It is semi-leafless and is resistant to Fusarium
wilt and Ascochyta race C. Developed by Cebeco-Handelsraade (Netherlands)
and distributed by International Seeds, Box 168, Halsey, OR 97348.
Other varieties:
Maple - Medium to low in yield,
late, with long vines. The variety has large olive-colored seed with brown mottle
and indistinct hilum. This is an excellent variety for pigeon feed use generally
grown under contract when buyers offer a higher price than for recommended varieties.
Tara- High in yield and medium maturity
with long-vines. Seeds are medium in size and cream-colored. It has satisfactory
cooking quality but the irregular seed shape is undesirable. It is resistant to
powdery mildew. Released by Agriculture Canada, Morden in 1978. Production of certified
seed limited to Canada.
Progeta - A leading white pea variety
in the United Kingdom is resistant to pea bacterial blight, Race 2. Distributed
by Sharpes and Company; U.K.
F. Weed Control:
Weed competition may severely reduce yield of field pea. Heavy weed infestations
should be controlled by cultural or chemical measures prior to rotating into field
pea, and prior to planting.
1. Mechanical control:
Harrowing immediately after seeding, will destroy newly emerged shallow seeded annual
grasses and broadleaves. Cultivation should be avoided during pea emergence and
for several days after emergence to permit rooting and stand establishment. If post-emergence
harrowing is necessary, it should be done when field pea are in the 4 to 6-leaf
stage and should be viewed as a method of last resort for weed control.
2. Chemical control:
a. Pre-plant incorporated (PPI):
Treflan 4E (trifluralin) can be applied at a rate of 0.5 qt/acre, before planting,
for the control of annual grasses and many broadleaf weeds. Treflan may be weak
on wild mustard, smartweed, common ragweed, velvetleaf, and black nightshade. Treflan
should be incorporated two or three in. within 24 hours of after application.
Command 4E (clomazone) can be applied at a rate of 1 pt/acre prior to planting.
Command should be incorporated immediately after planting to minimize off-site movement
and users should maintain a proper distance from susceptible species as detailed
on the label. This herbicide controls annual grasses and many broadleaf weeds but
is weak on pigweed and only partially controls cocklebur and black nightshade.
b. Preemergence herbicides:
Lasso 4E (alachlor) can be applied at a rate of 2 qt/acre. It should be sprayed
after planting before field pea and weeds emerge. Alachlor controls most annual
grasses and many broadleaf weeds including black nightshade but it is weak on velvetleaf,
mustard, smartweed, and common lambsquarter. Preplant treatment also provides reasonable
yellow nutsedge control.
Ramrod 4F (propachlor) can be applied at a rate of 4 qt/acre and is used to control
many annual grasses.
c. Post-emergent herbicides:
Basagran 4E (bentazon) can be applied postemergence at a rate of 0.75 to 1.0 qt/acre.
Apply when annual broadleaves are small and actively growing, but only after three
pairs of pea leaves (usually four nodes) are present. Do not include crop oil in
spray mixture. Provides excellent control of velvetleaf, wild mustard and common
ragweed. Basagran will give some control of yellow nutsedge and erratic control
of Canada thistle.
Can-trol or Thistrol 2E (MCPB) can be applied at rates of 1 to 2 qt/acre. This herbicide
should be applied before the flowering stage when the crop has 6 to 12 nodes and
before thistles are 9 in. tall. MCPB controls many annual broadleaf weeds and inhibits
Canada thistle bud formation. Canada thistle buds may reduce market quality of field
pea. MCPB is weak on smartweeds, mustards, and black nightshade.
Paraquat 1.5E (Gramoxone) can be applied at a rate of 3 to 5 pt/acre before or after
seeding but before pea emergence. Paraquat is a non-selective herbicide and will
injure newly emerging field pea if they come in control with this herbicide.
Roundup 3E (glyphosate) can be applied at a rate of 2 qt/acre before or after seeding
but before crop emergence. Roundup, like paraquat, is a non-selective herbicide
so it is important to not contact the crop. Roundup provides excellent control of
quackgrass and good suppression of Canada thistle and other perennials.
Note: Additional information on weed control in field pea may be obtained from:
Commercial Vegetable Weed, Insect and Disease Control Guide: Beans and Field pea,
1989 Minnesota Extension Service, AG-FO-1881, and Commercial Vegetable Production
in Wisconsin, 1990, University of Wisconsin-Extension, A3422 or similar publications
from other states extension service. Be sure to check labels of all herbicides for
up-to-date clearance on field peas.
G. Diseases and Their Control:
Seed rots are soil-borne fungal diseases caused by Pythium, Fusarium solani
or Rhiziotonia solani. Seed is infested shortly after planting and seedlings
fail to emerge. Treatment of seed with a fungicide can be a cost effective control.
Fusarium root rot is favored by warm dry soil conditions, excessive compaction
and low soil fertility. Initial infections usually occur where the cotyledons are
attached to the stem. Symptoms include a brownish-red discoloration of the vascular
tissue. The vascular tissue of the root may also be discolored (reddish streaks).
Control is best achieved by planting field pea in a four year rotation with other
crops.
Ascochyta blight is seed-borne and is characterized by purplish to black, streaky,
and irregularly shaped lesions on the stem. Septoria blight, a fungus, causes the
leaves to appear yellowish and shrunken. Bacterial blight produces water-soaked
lesions on all parts of the plant, which may appear creamy and slimy under highly
humid conditions. Powdery and downy mildew cause leaves to turn yellow under cool,
moist conditions. Warm dry weather reduces mildew growth.
Pea mosaic, a viral disease, induces severe stunting and mottling of leaves with
streaks of yellowing on the stems. Early infection causes the plant to die. Crop
rotation is recommended for control.
H. Insects and Their Control:
Insect pests have generally not caused serious problems in field pea production
areas. However, the following insects may, on occasion, be found in field pea fields:
Pea aphids occasionally become numerous and cause injury by sucking plant sap which
cause foliage and blossoms to wilt and shrivel. Aphids may also be vectors for viral
diseases. The pea aphid is light green in color, and if necessary, may be controlled
with an insecticide.
Loopers, army worms and alfalfa caterpillars are foliage feeders and may occasionally
become a problem in field pea fields. If necessary, these insects may be controlled
with an insecticide.
Seedcorn maggot feeds on sprouting seed or on seedlings. To control this insect,
coat the seed with an insecticidal seed treatment.
Note: Information on insects obtained from "Commercial Vegetable Weed, Insect,
and Disease Control Guide, 1989, Minnesota Extension Service, AG-FO-1881. Information
on specific insecticides may be obtained from this or similar state extension publications.
I. Harvesting:
Field pea plants are prostrate vines at maturity and may be difficult to harvest.
The crop is usually harvested the same time as wheat, or as soon as the seed is
hard. Seeds may shatter if harvesting is delayed, however, losses from shattering
may be reduced by harvesting field pea before all pods are dry. Harvesting at night
or early morning, when pods are wet with dew, will also reduce shattering. Field
pea do not ripen as uniformly as other crops, therefore it may be necessary to harvest
while there are green leaves and pods remaining. The coloring may bleach out of
the seeds if pods lay on the moist ground for long periods. Bleaching of seed is
undesirable and will reduce seed quality.
Field pea may be swathed or straight combined. If swathing just prior to full maturity,
a light roller can be placed behind the swather to help prevent wind damage. Field
pea may be swathed when fully mature and should be combined immediately to prevent
wind damage. Straight combining will eliminate the possibility of windrow damage
caused by high winds and reduce losses at the cutter bar. A desiccant may be used
to enhance crop drying prior to combining. It is essential to maintain a low cutter
bar height to reduce losses. Floating cutter bars and raking-type pickup reels are
available to increase harvest efficiency. To reduce seed shattering, the combine
reel should be adjusted to a low speed.
J. Drying and Storage:
Federal grain standards have been established for whole and split field pea. Splitting
involves a mechanical process and results in separation of the two seed cotyledons.
After dockage has been removed, the seeds are graded. Reductions in grade may be
the result of weevil damage, heat damage, bleached or shriveled seeds and seeds
with cracked seed coats. A certain percent of splits are allowed in whole field
pea and a certain percentage of whole field pea is allowed in split field pea. For
safe storage, dry field pea should be maintained at 14% moisture.
VI. Yield Potential and Performance Results:
Field peas ranged from 1700 to 3000 lb/acre in Minnesota tests, Tables 3 and 4.
Table 3. Yield and agronomic characteristics for field pea in Minnesota, 1981-851.
|
Variety
|
Yield2
|
Seed Protein
|
Days from planting to:
|
Height
|
|
|
|
Bloom
|
Maturity
|
|
|
(lb/acre)
|
(%)
|
---- days ----
|
(in.)
|
Century
|
1960
|
26
|
64
|
104
|
57
|
Lenca
|
2334
|
25
|
63
|
102
|
50
|
Miranda
|
3008
|
23
|
57
|
97
|
21
|
Paloma
|
2780
|
25
|
59
|
99
|
21
|
Procon
|
2950
|
25
|
58
|
97
|
27
|
Trapper
|
1741
|
27
|
64
|
106
|
55
|
Belinda
|
2813
|
25
|
58
|
99
|
20
|
Tipu
|
2544
|
24
|
63
|
105
|
54
|
Victoria
|
2368
|
25
|
59
|
100
|
46
|
LSD 5%
|
91
|
|
|
|
|
1Average of trials located at Becker, Grand Rapids, Crookston and Roseau,Minnesota,
60 lb/bu.
210% moisture basis.
|
Table 4. Yield and agronomic characteristics of field pea varieties at Roseau, MN,
1989.
|
Variety
|
Yield
|
Seed Protein
|
Days from planting to:
|
Height
|
|
|
|
Bloom
|
Maturity
|
|
|
(lb/acre)
|
(%)
|
---- days ----
|
(in.)
|
Bellevue
|
17711
|
26
|
56
|
-
|
64
|
Helka
|
2223
|
24
|
64
|
86
|
64
|
Impala
|
1744
|
24
|
54
|
88
|
53
|
Kimo
|
2409
|
23
|
53
|
87
|
59
|
Miranda
|
1060
|
25
|
52
|
87
|
59
|
Procon
|
1585
|
24
|
53
|
85
|
51
|
Renata
|
1204
|
25
|
52
|
84
|
54
|
Solara
|
1472
|
24
|
53
|
86
|
49
|
Tipu
|
1529
|
24
|
55
|
88
|
73
|
Titan
|
1037
|
24
|
55
|
93
|
56
|
Trapper
|
1106
|
28
|
55
|
93
|
68
|
LSD 5%
|
430
|
|
|
|
|
110% moisture basis.
|
VII. Economics of Production and Markets:
World-wide demand for field pea is strong, however the European Community may regulate
field pea imports more severely in the near future and this is expected to weaken
demand. In 1986, in the United States the f.o.b. warehouse price for dry field pea
was over $10.00/cwt. Growers have reported gross incomes of $300/acre growing field
pea for seed. Field pea sold wholesale for $8 to 9/cwt. could gross $200 or more/acre.
Growers who anticipate selling field pea to a wholesale buyer should contact that
buyer prior to planting to determine which varieties are best suited for the area
and which are in the highest demand.
U.S. plantings of dry field pea (yellow) in 1989 are estimated at over 30,000 acres.
Canadian plantings (1989) totaled over 450,000 acres.
Table 5. Summary of Estimated Production Costs and Returns for Field Pea. Roseau
County, Minnesota, September 1990.
|
Item
|
Unit
|
Price ($)
|
Quantity
|
Amount ($)
|
Income
|
Bu.
|
5.00
|
42.00
|
210.00
|
Direct Expenses
|
|
|
|
|
Fertilizer
|
Acre
|
30.25
|
1.00
|
30.25
|
Herbicides
|
Acre
|
16.05
|
1.00
|
16.05
|
Seed
|
Acre
|
33.00
|
1.00
|
33.00
|
Fuel
|
Gal.
|
0.80
|
9.36
|
7.49
|
Repair & Maintenance
|
Acre
|
10.10
|
1.00
|
10.16
|
Interest
|
Acre
|
0.12
|
96.94
|
3.08
|
Total Direct Expenses
|
|
|
|
100.02
|
Returns Over Direct Expenses
|
|
|
|
109.98
|
Allocated Overhead
|
Acre
|
77.48
|
1.00
|
77.48
|
Allocated Full-time Labor
|
Hour
|
8.00
|
2.10
|
16.34
|
Crop Loss/Insurance
|
Acre
|
0.03
|
210.00
|
6.30
|
Total Expenses and Costs
|
|
|
|
200.13
|
Returns Above Total Expenses and Costs
|
|
|
|
9.87
|
Computed average total cost to grow a bu. of field pea = $4.77
|
VIII. Information Sources:
Field Pea. 1983. Mas Yamaguchi. In
World Vegetables; Principles, Production and Nutritive Values. AVI Publishing Co.,
Inc., Westport, Connecticut.
Production of Field Peas in Canada. 1989. S.T. Ali-Khan and R. C. Zimmer. Agric.
Canada Pub. 1710/E. Agric. Canada, Ottawa K1A 0C7.
Dry Pea Production in Saskatchewan. 1988. A. E. Slinkard, B. N. Drew and F. A. Holm.
Pub. 225. Extension and Community Relations, Univ. of Saskatchewan.
Winter Pea/Winter Cereal Mixtures as Potential Forage Crops in Northern Idaho. 1985.
G. A. Murray, D. L. Auld and J. B. Swensen. Bull. 638. Agric. Exp. Sta., University
of Idaho.
Transporting and Marketing Idaho's Dry Edible Peas and Lentils. 1987. W. Harris
and N. Meyer. Bull. 667. Cooperative Extension Service, University of Idaho.
USA Dry Pea and Lentil Industry. P.O. Box 8566, Moscow, Idaho. 83843.
Pulse or Grain Legume Crops for Minnesota. 1975. R. G. Robinson. Station Bull. 513.
Agric. Exp. Sta., University of Minnesota.
Dry Pea, Lentil and Chickpea Production in Northern Idaho. 1987. Bull. 664. G. A.
Murray, K. D. Kephart, L. E. O'Keeffe, D. L. Auld and R. H. Callihan. Agric. Exp.
Sta., University of Idaho.
Commercial Vegetable Weed, Insect, and Disease Control Guide: Beans and Peas. 1990.
L. Waters, Jr., D. M. Noetzel, F. L. Pfleger and L. Hertz. AG-FO-1881. Minnesota
Ext. Ser., University of Minnesota.
Varietal Trials of Farm Crops. 1990. L. H. Hardman, Ed. Minnesota Report 24. Agricultural
Experiment Station, University of Minnesota.
Guide to Computer Programmed Soil Test Recommendations for Field Crops. 1986. G.
W. Rehm, C. J. Rosen, J. F. Moncreif, W. E. Fenster, and J. Grava. Agric. Bull.
0519, Minnesota Extension Service, University of Minnesota.
Commercial Vegetable Production in Wisconsin. 1990. A3422. Cooperative Extension
Service, University of Wisconsin-Madison.
References to pesticide products in this publication are for your convenience and
are not an endorsement of one product over other similar products. You are responsible
for using pesticides according to the manufacturer's current label directions. Follow
directions exactly to protect people and the environment from pesticide exposure.
Failure to do so violates the law.