Potential Grain Yield Using Calculated Components

Assume 90,000 kernels/bu and 56 lb/bu; kernel mass = 282 mg

- In the 1990s, we usually recommended buying more expensive seed, if hybrid was better performing.
- Today, not true due to high seed cost.
- "It's no secret that the price of seed corn has been on the rise. Better genetics and improved traits have increased that seed's performance — at a cost. With the retail price of the elite corn hybrids now well over \$200 per unit, producers can expect another significant price rise. And \$300, even \$500 seed corn is on the horizon ..."

Mark Moore "\$500 Seed?" In Farm and Industry News, September 1, 2008

Corn response to plant density in Wisconsin

Varies by location and hybrid (GxE)

- ✓ Usually grain yield increases with higher plant density to an optimum
- Concerns
 - ✓ Lodging
 - ✓ Drought
 - ✓ Higher plant density rarely lowers yield

Increasing plant density increases grain yield ... but there is a risk

Is Plant Density at Maximum Yield Changing? Annual grain yield increase at optimum plant density = 2.8 bu/A

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Source: Lauer Arlington, 1987-2008 02PD

The Maximum Return to Seed (MRTS) Strategy Price ratio of seed:corn (i.e. \$/1000 seeds ÷ \$/bu corn).

Price of seed		Price of corn (\$/bu)								
\$/80 K bag	\$/1000 seeds	\$1.00	\$1.75	\$2.50	\$3.25	\$4.00	\$4.75	\$5.50	\$6.25	\$7.00
\$0	\$0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\$40	\$0.50	0.50	0.29	0.20	0.15	0.13	0.11	0.09	80.0	0.07
\$80	\$1.00	1.00	0.57	0.40	0.31	0.25	0.21	0.18	0.16	0.14
\$120	\$1.50	1.50	0.86	0.60	0.46	0.38	0.32	0.27	0.24	0.21
\$160	\$2.00	2.00	1.14	0.80	0.62	0.50	0.42	0.36	0.32	0.29
\$200	\$2.50	2.50	1.43	1.00	0.77	0.63	0.53	0.45	0.40	0.36
\$240	\$3.00	3.00	1.71	1.20	0.92	0.75	0.63	0.55	0.48	0.43
\$280	\$3.50	3.50	2.00	1.40	1.08	0.88	0.74	0.64	0.56	0.50
\$320	\$4.00	4.00	2.29	1.60	1.23	1.00	0.84	0.73	0.64	0.57
\$360	\$4.50	4.50	2.57	1.80	1.38	1.13	0.95	0.82	0.72	0.64
\$400	\$5.00	5.00	2.86	2.00	1.54	1.25	1.05	0.91	0.80	0.71

Maximum return to seed at Arlington, WI

Bt-CB corn should be grown at higher plant density than conventional corn ...

UWEX: trade-off between hybrid yield gain and seed cost Spreadsheet for Calculating Seed Costs

Guidelines for Choosing an Appropriate Plant Density for Corn

- May have the most potential to move a farmer from current yield levels.
 - ✓ Might be the place to start for moving off the "yield plateau."
 - ✓ Optimum plant densities seem to be increasing as newer hybrids are commercialized.
 - ☐ Grain yield increases to plant densities of 39,400 plants/A.
- The EOPD for seed:corn price ratios between 0.5 and 1.5 is 29,800 to 36,200 plants/A.
 - ✓ The plant density of 32,700 plants/A is within \$1.00 of the EOPD for ratios between 0.5 and 1.5.
- In general, silage yield increases as plant density increases.
 - ✓ A trade-off exists where quality decreases with increasing population.
 - ✓ Thus, the EOPD is the same for corn grown for silage or grain.
 - ✓ Corn silage is often more valuable than grain, thus the EOPD follows more closely seed:corn price ratios less than 1.0.

Let the plants tell you how your field is doing ...

Tillered v. Runt plants

Prolific v. Barren shoots

Big v. Small ears

Full ear tips v. Nose-back

Lodging

