2009 Agronomy Update Meetings

Platteville, Arlington, Janesville, Sparta, Eau Claire, Wausau, Kimberly, and Fond du Lac

Joe Lauer

University of Wisconsin

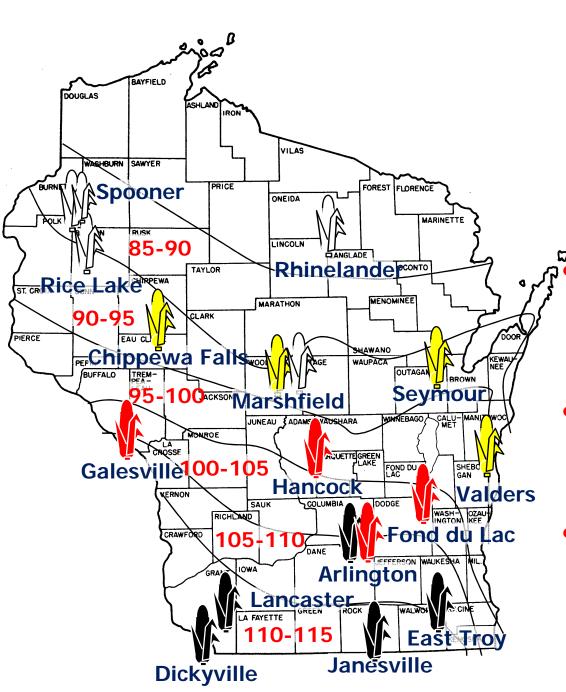
Cooperating with Grant, Columbia, Rock, Monroe, Eau Claire, Marathon, Outagamie, and Fond du Lac Counties

January 5 – 9, 2009

Highlights for corn production during 2008

Records

- ✓ Five locations have a 10-yr average > 200 bu/A (up 1 Loc from 2007).
- "Most expensive corn crop ever planted."


Growing season

- Lost grain and silage trials at Rhinelander due to poor stands caused by crane feeding.
- ✓ Fourth year of drought in NW WI
- Rains in early June caused significant soil erosion in SC WI.
 - □ Fishing for carp in WI corn fields.
 - Denitrification at many sites
- ✓ Increased frequency of multiple ears
- New things in the Hybrid Trials
 - New corn precision vacuum planter. No longer thinning.

Corn Agronomy Program 2008

Rationale and Situation

Corn is grown on 4 million acres in WI. A one bushel increase by farmers increases farm income \$8 to \$16 million dollars annually.

 In 2008, 520 corn hybrids were tested at 14 locations.

Objective

• To provide unbiased performance comparisons of hybrid seed corn available in Wisconsin.

2008 Wisconsin Corn Performance Trials Grain Summary

	1998-	2007	20	008	Percent
Location	Ν	Yield	Ν	Yield	change
Arlington	1925	215	274	215	0
Janesville	1878	218	218	212	-3
Lancaster	1790	208	174	208	0
Fond du Lac	1468	187	164	200	7
Galesville	1578	203	148	197	-3
Hancock	1595	216	159	213	-1
Chippewa Falls	1197	143	155	184	29
Marshfield	1546	164	211	129	-21
Seymour	1221	165	155	163	-1
Valders	1554	165	155	185	12
Rhinelander/White Lake	153	170			
Spooner	1427	136	168	126	-7

4 http://corn.agronomy.wisc.edu

2008 Wisconsin Corn Performance Trials Silage Summary

	1998-	2007	2	800	Percent		
Location	Ν	Yield	Ν	Yield	change		
Arlington	589	9.6	82	10.2	6		
Lancaster	589	8.9	82	9.2	3		
Fond du Lac	636	8.6	63	8.6	0		
Galesville	641	9.1	63	8.8	-4		
Chippewa Falls	260	7.1	61	7.3	3		
Marshfield	557	7.4	80	6.0	-19		
Valders	557	7.2	61	8.7	22		
Rhinelander	144	7.2					
Spooner	288	6.9	38	6.8	-2		

Overview

- The economics of hybrid maturity
- Tillage interactions with hybrid performance
- Producing corn with high seed prices and costs

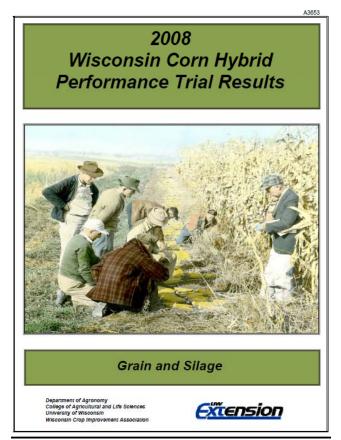
Question?

What relative maturity is a full-season hybrid on your farm?

- a) >= 110 days
- b) 100-109 days
- c) 90-99 days
- d) 80-89 days
- e) <= 79 days

Finding hybrid maturity information in the UW Corn Hybrid Performance Report

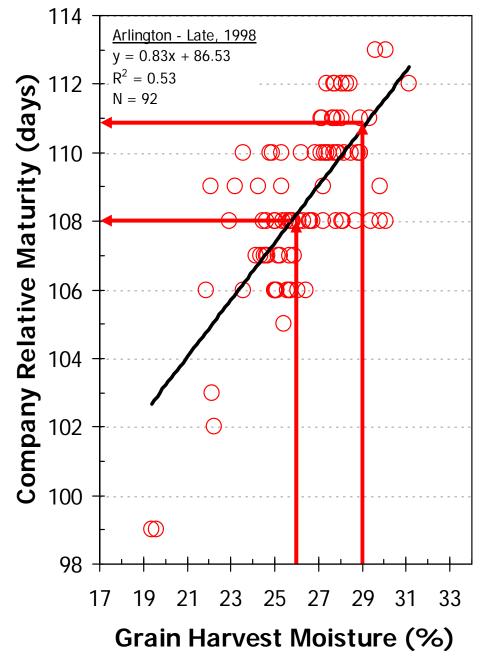
Table 2. Companies and hybrids included in the 2008 trials. A star (*) indicat for yield or performance index (P.I. or MILK2006) in one or more zones.


for yield or performance	e index (P.I. or MIL					re zones.
		Relativ				
Brand Hybrid	Traits - Genes†			SRM	٩rt.	Tables
AgriGold A6225VT3	CB,CR,RR-GQJ	99	98		55	8
[∗] AgriGold A6279VT3	CB,CR,RR-GQJ	101	103		55	6, 9*
AgriGold A6309BtRWRR	CB,CR,RR-GNJ	103	103	101	55	6, 9, 15*
AgriGold A6323CL	IMI-C	103	104	102	55	15*, 22*
AgriGold A6325VT3	CB,CR,RR-GQJ	104	104	101	55	6, 9, 15*
AgriGold A6394VT3	CB,CR,RR-GQJ	108	110	107	55	7, 13
				107		
AgriGold A6399VT3	CB,CR,RR-GQJ	108	107		55	9
AgriGold A6439VT3	CB,CR,RR-GQJ	109	109	107	55	7*, 13*, 16*
AgriGold A6459VT3	CB,CR,RR-GQJ	110		112	55	14
AgriGold A6474VT3	CB,CR,RR-GQJ	111		111	55	14
AgVenture AV7597V3R	CB.RR-GJ	106		106	118	13*
AgVenture AV7729CBLL	CB,LL-KD	107		107	118	13
AqVenture G6512	RR-J	97		103	118	13*, 15*
		94		96	118	15* 17*
AgVenture R4926VBW	CB,CR,RR-GNJ					15*, 17*
AgVenture R5677VBW	CB,CR,RR-GNJ	97		101	118	15*
AgVenture R6608YBW	CB,RR-GJ	100		106	118	13
AgVenture R6864	RR-J	102		106	118	13*
AgVenture RL5906HBW	CB,LL,RR-LDJ	97		99	118	15, 17*
Blue River 25M90		88	93		96	21*
Blue River 30B19		90	94		96	21
Blue River 41R00		97	54	95	96	17*
Blue River 42A32		96	96	55	96	21*
		100	30	102	96	18
Blue River 46L96			101	103		
Blue River 48B30		103	101	104	96	18*, 21*
Blue River 56M30		106	104		96	21*
Blue River 59L36		108		107	96	18
Carharts Blue Top C9000Bt	CB-G	90	87		55	10, 12
Carharts Blue Top CR1185V	CB,CR,RR-GQJ	85	87		2	10*, 12*
Carharts Blue Top CR1857R	CB,RR-GJ	90	95		55	8
Carharts Blue Top CR1995V	CB.CR.RR-GQJ	95	96		33	8, 11
Carharts Blue Top CR9680V	CB,CR,RR-GQJ	98	98		55	
camana blue rup ch/3000V	00,011,111-000	30	30		55	6, 8, 11
Cornelius C382YG	CB-G	103		105	99	13*
Cornelius C447VT3	CB,CR,RR-GQJ	104	103		99	6
Cornelius C454XTLL	CB,CR,LL-LPD	105	106	107	99	6*, 13*
Cornelius C462		104	104		99	22*
Cornelius C466XTLL	CB,CR,LL-LPD	105	105		99	6*
Cornelius C547∨T3	CB,CR,RR-GQJ	107	109		99	7
Cornelius C591	,,	109	106		99	22*
Cornelius C595YG	CB-G	109	109	105	99	7, 13*
Cornelius C649VT3	CB,CR,RR-GQJ	110	109	111	99	7, 14
Overally Overative 2000/70	00 00 00 00 00	05	05			
Croplan Genetics 238VT3	CB,CR,RR-GQJ	85	85		37	10
Croplan Genetics 2520TS	CB,CR,RR-GNJ	86	86		37	10
Croplan Genetics 2538RR	RR-J	86	88		37	10
Croplan Genetics 3114VT3	CB,CR,RR-GQJ	91	95	94	37	11*, 17*
		95	97		37	 11*
Croplan Genetics 3456VT3	CB,CR,RR-GQJ	95				
Croplan Genetics 3456VT3 Croplan Genetics 3514VT3	1 1 .	95	98	95	37	
Croplan Genetics 3456VT3 Croplan Genetics 3514VT3 Croplan Genetics 3724VT3	CB,CR,RR-GQJ CB,CR,RR-GQJ CB,CR,RR-GQJ			95		11*, 17* 8, 11*

† Code = Trait(Gene); B = bmr(bm3); C = IMI(IT); D = LL(T25); F, G, K, L = Bt-CB: (Bt176, Q, R = Bt-CR (Mon863, DAS591227, Mon88017, MIR604); X = Unknown.

Relative Maturity (RM) Company RM (from Entry form)

✓ WI Grain and Silage RM


 Purpose is to verify maturity so that comparisons can be made between companies.

Method for Determining Wisconsin Relative Maturity (since 1998)

GRM = Grain Relative Maturity, **SRM** = Silage Relative Maturity

- For every hybrid, we know:
 - Company Relative Maturity
 - Grain harvest moisture
- Regress Company RM values and Grain harvest moisture for each hybrid at every location.
- For example:
 - In trial at left, all hybrids harvested at 26% moisture = 108 d GRM. All hybrids at 29% moisture = 111 d GRM.
- GRM = Average of all locations.
- SRM uses a similar method, except forage harvest moisture is used.
- "Bottom line:" Maturity comparisons can be made <u>between</u> companies.

Compare hybrids of similar maturity ...

Identify at least two and preferably three groups of hybrids with similar moisture at harvest

Table 11 (continued). North Central Zone - Late Maturity Grain Trial. (page 3 of 3)

91 DAY RELATIVE MATURITY OR LATER, BASED ON COMPANY RATING (CHIPPEWA FALLS = CHP, MARSHFIELD = MAR, SEYMOUR = SEY, VALDERS = VAL)

	1					20	08				,	2007 7 Test
					AVERAG	ε		<u>CHP</u>	MAR	SEY	VAL	AVERAGE MAR SEY VAL AVERAGE
			Yield	P.I.	Moist	Test	Lodged	Yield	Yield	Yield	Yield	Yield P.I. Yield Yield Yield
BRAND	HYBRID	Genes [†]	bu/A	#	%	Wt.	%	bu/A	bu/A	bu/A	bu/A	bu/A # bu/A bu/A bu/A bu/A
Dyna Gro	55V18	GQJ	163	99	25.0	55	1	174	122	164	194	
Pioneer	37Y14	LPDJ	178 *	* 103 *		53	0	198 '	¹³⁰	176	207 *	Hybrid maturity is likely
Gold Country	9810VT3	GQJ	172	101 *	25.1	53	0	205 '	¹²⁷	164	191	
Legend Seeds	LR9798VT3	GQJ	161	98	25.1	54	0	181	119	163	182	similar within about 1-2%
Croplan Genetics	3456VT3	GQJ	176	103 *	25.1	53	0	189	131	183	202	Similar within about 1-2%
Johnson Seeds	7100CBLLRW	KRD	163	98	25.2	51	1	176	123	154	199	rongo in mojeturo
Growmark	FS49SV3	GQJ	175	102 *	25.3	53	o.	214 '	121	172	192	range in moisture.
Midwest Genetics	70006R	1	164	98	25.3	52	1	213 '	122	152	169	
NuTech	1N-398CBLLRW	KRD	169	100	25.4	52	0	196	123	168	191	
Legacy Seeds	L3750VT3	GQJ	163	98	25.4	54	1	206	124	141	182	Hybrids are sorted on grain
NuTech	3T-098AVT3	GQJ	180 *		25.4	54	0	207 '	125	178	210 *	¹⁸¹ moisture.
Croplan Genetics	3514VT3	GQJ	191 *		25.4	54	0	223 '	136	198 *	206 *	
Renk	RK584CBLL	KD	157	96	25.5	53	0	202 '	122	142	162	
100-DAY HYBRID TR			405	~~	25.6	~				101		Early-, short-season hybrids listed
Crows	1928R	J	165	99	25.6	52	1	203 '	124	161	173	
Croplan Genetics	421VT3	GQJ	162	98	25.7	53	0	178	120	150	200	first.
NuTech	3T-098VT3	GQJ	167	99	25.8	53	0	185	125	171	185	181 106 187 161 195 1
Johnson Seeds	7199CBLLRW	KRD	159	97	25.8	53	0	192	118	162	163	Late-, long-season hybrids listed
Jung	7454VT3	GQJ	176	102 *	26.0	53	0	205 '	126	167	205 *	Late-, long-season righting listed
Trelay	4T722	GQJ	176	101 *	26.5	53	0	222 3	121	174	188	¹⁸⁶ 186 1851. 1917
NuTech	3T-500VT3	GQJ	169	99	26.5	52	1	202 '	127	154	193	
Kruger	K6400TS	GNJ	167	99	26.7	52	0	224 '	122	127	196	Average moisture of all xxx-
NuTech	5N-898GTCBLLRW	KRDS	149 159	93 96	26.7	53	1	159	103	148	186	
Mycogen	2A517	LD			26.8	52	0	210 *	92	161	174	day hybrids rated by the
NuTech	3C-300RRYGCB	GJ	174	101 *	27.0	52	U	198 '	129	164	203 *	uay hybrius rated by the
Johnson Seeds	7804RRCRW	NJ	172	99	27.4	51	1	204 '	110	170	203 *	Minnocoto Dolativo Maturity
Gold Country	10204VT3	GQJ	181 *	103 *	27.7	52	0	217 3	135	162	212 *	Minnesota Relative Maturity
Jung	7475VT3	GQJ	191 *	105 *	28.0	52	0	209 3	128	211 *	217 *	
Jung	7514VT3	GQJ	185 *	103 *	28.7	52	0	222 '	129	175	216 *	system and grown in the trial.
Legend Seeds	LS9703VT3	GQJ	175	99	30.0	52	1	183	121	185	210 *	
Duran Care	54740		470	07	20.0	50		204	400	40.4	402	
Dyna Gro	54T42	LJ	170	97	30.8	53	0	201 '	100	184	193	
Legend Seeds	LR9707RRHxT	PDJ	153	90	34.1	50	1	189	125	146	197	
MEAN LSD(0.10)**			167 14	100 5	24.4 1.9	53 1	1	192 27	125 12	164 25	187 14	162 100 169 154 162 170 21 7 19 17 18 10
L3D(0.10)**			14	5	1.9	1	1	21	12	23	14	21 / 19 1/ 10 10

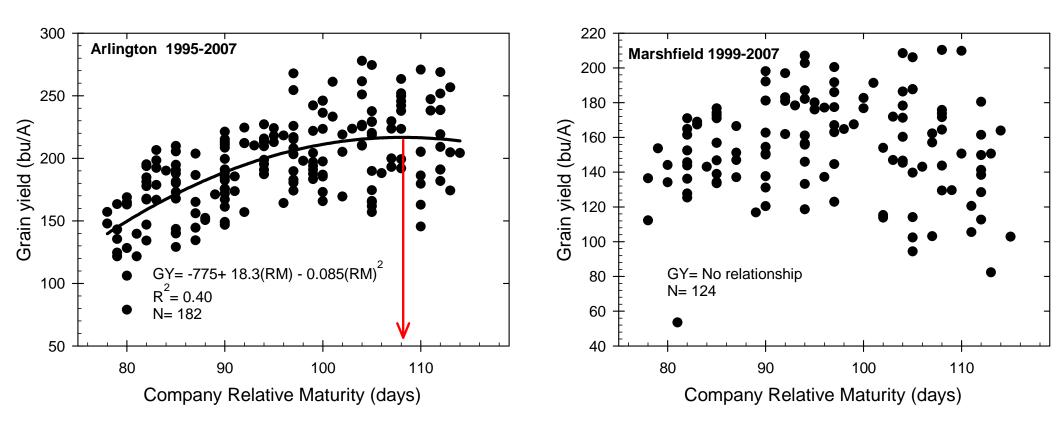
Code = Trait(Gene): B=bmr(bm3): C=IMI(IT); D=LL(T25): F,G,K,L=Bt-ECB(Bt176, Mon810, Bt11, TC1507); H,S,J=RR(MonGA21, SYTGA21,Nk603); M=Leafy; N.P.Q.R=Bt-CRW(Mon863, DAS591227, Mon88017, MIR604); X=Unknown.

Average grain moisture of all hybrids in the trial as rated by the participating company maturity rating systems. Ratings are rounded to 5 day increments.

* Hybrids that performed statistically similar to the highest hybrid in the trial.

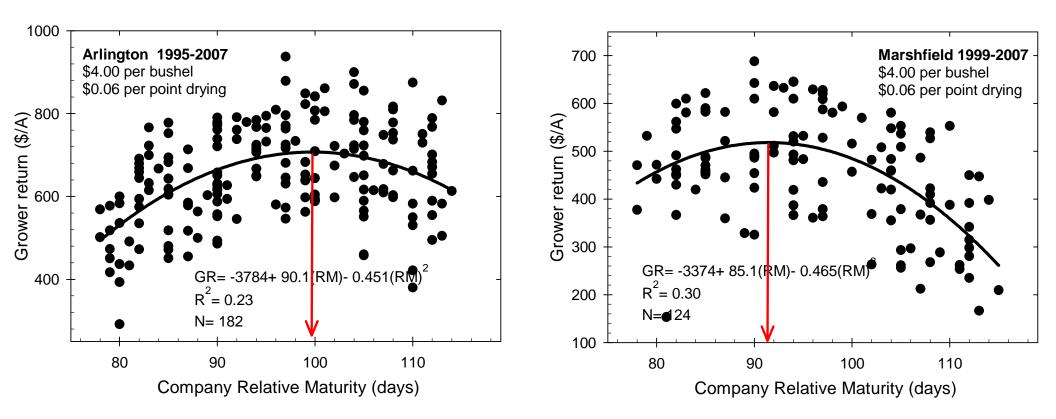
Shaded results provide the best estimate of relative hybrid performance.

10 http://corn.agronomy.wisc.edu


Question?

- What proportion of you farm is planted to full-season hybrids?
 - a) 0 20 percent
 - b) 21 40 percent
 - c) 41 60 percent
 - d) 61 80 percent
 - e) 81 100 percent

The influence of maturity on yield ... longer season = greater yield ... and usually more risk.



12 http://corn.agronomy.wisc.edu

Lauer © 1994-2009 University of Wisconsin – Agronomy

It all boils down to economics (drying cost) ...

13 http://corn.agronomy.wisc.edu

Lauer © 1994-2009 University of Wisconsin – Agronomy

Relative maturity (days RM) for maximum grain yield and optimum economic yield in Wisconsin

Location	Years tested	N	Maximum Yield RM	Optimum Economic RM*
			days	days
Arlington	1995-2007	182	108	100
Janesville	1996-1997	30	107	105
Lancaster	1996-1997	28	112	112
Fond du Lac	1996-1997	30	103	99
Hancock	1995-2005	94	105	99
Chippewa Falls	1999-2001	42	104	
Marshfield	1999-2004	122		91
Seymour	1999-2007	58	104	97
Valders	1999-2006	57	112	

* Grain price= \$4.00 per bushel, Drying cost= \$0.06 per point bushel

Optimum relative maturity (days RM) for four corn production systems at Arlington (1995-2007)

System: Drying Cost	<u>Grain price (\$/bu)</u>										
(\$ / point bu)	\$2.00	\$3.00	\$4.00	\$5.00	\$6.00						
High energy costs:\$0.06	95	98	100	101	102						
Commercial:\$0.04	97	100	102	103	104						
On-Farm:\$0.02	102	104	105	105	106						
Livestock:\$0.00	108	108	108	108	108						

15 http://corn.agronomy.wisc.edu

- Do you select hybrids based upon their response to tillage system?
 - a) Yes
 - b) No

How important is it to test hybrids in the environment it will be grown in next year? Can we predict next year's environment? NO Can we test in all potential environments? Impossible

- 1. Weather
- 2. Hybrid
 - Top to bottom ranking = 0 to 30% change
 - Presence or absence of genetic traits = 0 to 100% change

3. Date of Planting

- ✓ May 1 to June 1 = 0 to 30% change
- Also need to add moisture penalty

4. Pest Control

- Timeliness
- ✓ Weeds > Insects > Diseases
- ✓ Good v. Bad = 0 to 100% change

5. Plant Density

- ✓ 32,000 to 15,000 plants/A = 0 to 22% change
- Most potential to move off yield plateau

6. Rotation

- Continuous v. Rotation = 0 to 30% change
- ✓ Greater consequence in 'stress' environments

7. Soil Fertility

- ✓ 160 v. 0 lb N/A = 20 to 50% change
- 8. Harvest Timing
 - \checkmark Oct. 15 to Dec. 1 = 0 to 20% change

9. Tillage

- Chisel v. No-till = -5 to 10% change
- ✓ No-till = energy savings
- Cultivation: Yes v. No = 0 to 10% change

10. Row Spacing

✓ 30-inches to 15-inches = 0 to 5% change

Tillage used to be about ...

- **1.** Controlling Weeds
- 2. Seedbed Preparation
- "Now, it is all about stand establishment."
 - Excellent herbicides
 - Planter technology developments
- Not necessary, except in continuous corn.
- Tillage responses more often measured in the northern corn belt.
- Less difference observed between tillage systems when using Round-up Ready crops.
- Do you have reason to suspect compaction?

✓ How was it caused? Sub-soil?

Photo by Dick Wolkowski, University of Wisconsin

What is the yield difference between CT and NT?

Crops in the Midwest are challenged by:

 Wet springs result in lack of root surface area

Drainage is critical

- Dry and hot conditions during pollination, kernel set, and grain filling
- Short-term experiments
 - ✓ CT produces 5-9% more than NT
- Long-term experiments
 - Averaged across all rotations, CT produces
 7 to 10 bu/A more yield than NT
 - In CS rotation, no difference between CT and NT systems
 - In CC rotation, CT increases yield up to 17 bu/A over NT

Photo by Mahdi Al-Kaisi, Iowa State University

Tillage does not affect corn yield the first year following soybean, but improves yield 5% in the second year, and 9% in the third year ...

No tillage response is observed in the second cycle ...

Corn Yield Response Following Five Years of Soybean

C= Corn, S= Soybean, Number = consecutive year of corn

Hybrid Selection Interactions with Tillage Systems

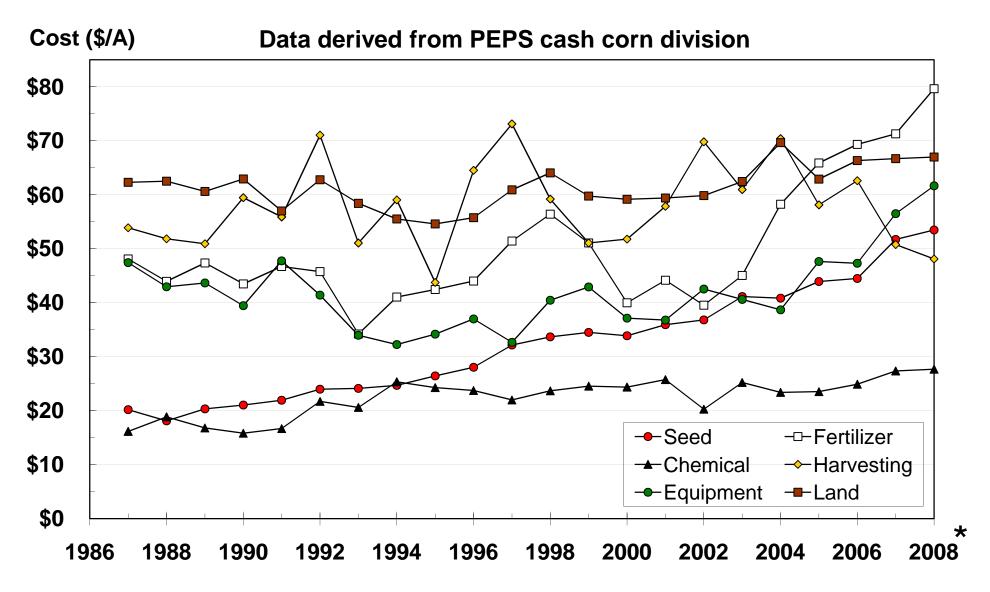
- Difficult to predict which hybrids will respond to reduced tillage
- Reduce hybrid maturity slightly in NT systems.
- Use independent yield trial data conducted over multiple locations
- Focus on yield stability. Don't focus only on seed price!

Significant

Non-significant

Significant	Non-significant
WI: Carter and Barnett (1987)	PA: Duiker et al. (2006)
NE: Brakke et al. (1983)	IA: Newhouse and Crosbie (1987)
	IA: Kaspar et al. (1987)
	IA: Newhouse and Crosbie (1986)
	MD: Anderson (1986)
	IA: Hallauer and Colvin (1985)
	IA: Funnermark and Hallauer (1985)
	IA: Newhouse (1985)
	SC: Karlen and Sojka (1985)
	IA: Mock and Erbach (1977)

Question?


- What is an average price for a bag of corn seed on your farm this year?
 - a) < \$100
 - b) \$101 \$150
 - c) \$151 \$200
 - d) \$201 \$250
 - e) \$251 \$300
 - **f)** > \$301

Average corn production costs for major inputs

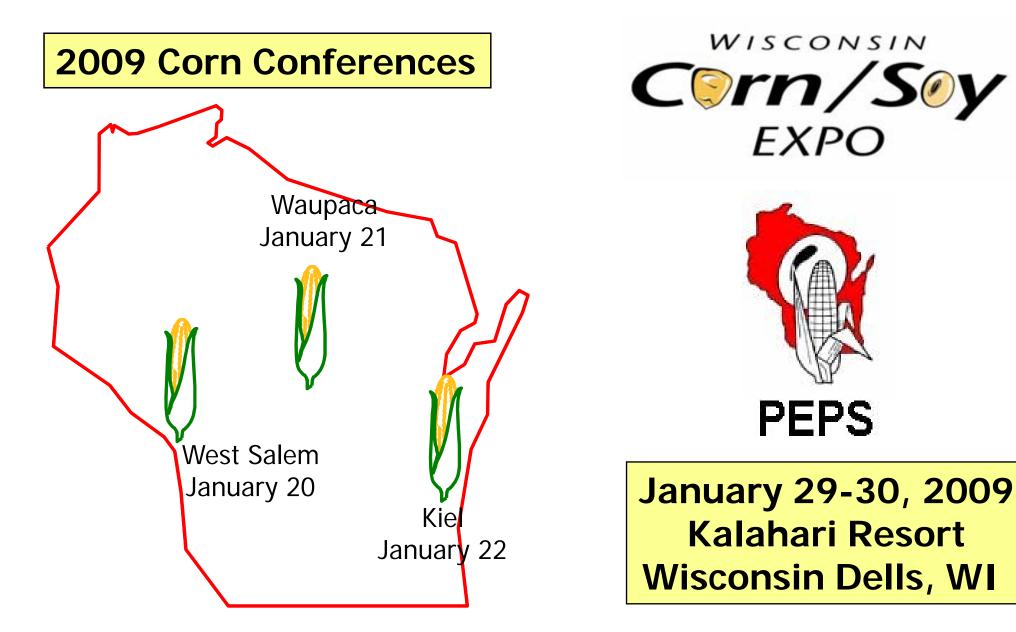
(*=projected)

Spreadsheet for Calculating Seed Costs

💼 🖟 🖉 🕫		CropSe	edPriceCalculat	or_v1.2.xls [Compatibility Mode] - Micr	osoft Exc	:el					6	
	nulas Data	Review V	iew Develo	per Add-Ins							() _ = x
S19 • 🗇 🏂												×
A	В	С	D	E F	G	Н	T	J	К	L	М	N
1 Crop Seed Price Calculator v1.2	written by J	oe Lauer, U	niversity of	Wisconsin (September 2008))				1	Xte	nci	
2									C	ALC	1151	
3 Predicted Field Yield (bu/A)	150											
4												
5 Hybrid / Variety	Hybrid A	Hybrid B	difference									
6 Seed Price (\$/bag)	\$150.00	\$150.00	\$0.00	Economic advantage (\$/			id A or	Hybrid E	B. Seed	orice dif	ference	= \$0
7 Kernels/Seeds per bag (no./bag)	80,000	80,000	\$0.00	per bag: A = \$150, Hybr	id B =	\$150.						
8 Seed Population (number/acre)	32,000	32,000	0	Yield advantage					rice (\$/b			1105
9 Potential plant death (%)	10	10	0	bushel/acre		\$1.00	\$2.00	\$3.00	\$4.00	\$5.00	\$6.00	\$7.00
10 Acres per bag (acres/bag)	2.27	2.27	0.00		14	\$14	\$28	\$42	\$56	\$70	\$84	\$98
11 Seed Cost (\$/acre)	\$66.00	\$66.00	\$0.00		12	\$12	\$24	\$36	\$48	\$60	\$72	\$84
12 Herbicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00	Hybrid A	10	\$10	\$20	\$30	\$40	\$50	\$60	\$70
13 Insecticide Cost (\$/acre)	\$0.00	\$0.00	\$0.00	yields less than	8	\$8	\$16	\$24	\$32	\$40	\$48	\$56
14 Fungicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00	Hybrid B	6	\$6	\$12	\$18	\$24	\$30	\$36	\$42
15 Insurance Cost (\$/acre)	\$0.00	\$0.00	\$0.00		4	\$4	\$8	\$12	\$16	\$20	\$24	\$28
16					2	\$2	\$4	\$6	\$8	\$10	\$12	\$14
17 Harvest Moisture (%)	20.0	20.0	0.0	Hybrid A = (Hybrid B)	0	\$0	\$ 0	\$0	\$ 0	\$0	\$0	\$0
18 Drying (\$/point*bushel)	<u>\$0.06</u>	<u>\$0.06</u>	<u>\$0.00</u>		2	\$2	\$4	\$6	\$8	\$10	\$12	\$14
19 Drying Cost (\$/bushel)	\$0.27	\$0.27	\$0.00		4	\$4	\$8	\$12	\$16	\$20	\$24	\$28
20 Handling Cost (\$/bushel)	\$0.02	\$0.02	\$0.00	Hybrid A	6	\$6	\$12	\$18	\$24	\$30	\$36	\$42
21 Hauling Cost (\$/bushel)	\$0.04	\$0.04	\$0.00	yields more than	8	\$8	\$16	\$24	\$32	\$40	\$48	\$56
22 Trucking Cost (\$/bushel)	\$0.11	\$0.11	\$0.00	Hybrid B	10	\$10	\$20	\$30	\$40	\$50	\$60	\$70
23 Storage Cost (\$/bushel)	\$0.12	\$0.12	\$0.00		12	\$12	\$24	\$36	\$48	\$60	\$72	\$84
24 Yield adjustment (\$/bushel)	\$0.56	\$0.56	\$0.00		14	\$14	\$28	\$42	\$56	\$70	\$84	\$98
25 Yield adjustment (\$/acre)	\$84.00	\$84.00	\$0.00									
26												
27 Total Input Cost (\$/acre)	\$150.00	\$150.00	\$0.00									
H → → H Crop Seed Price Calculator v1.2	2/			14								
Ready 🔚										115% 😑	V	. +

Summary

 With the demise of the Minnesota Relative Maturity Rating system, the corn industry has no standard for rating corn.


✓ "Buyer beware"

- Drying costs impact the optimum RM more than corn price.
 - ✓ Drying = up to 13 days RM while corn price = up to 7 days RM
- Choose hybrids based upon multi-location averages and consistency of performance rather than a specific situation.
 - ✓ For tillage systems, most evidence suggests very little interaction.
 - Tendencies may be known by company, but not likely due to rapid turnover.
- Corn seed price AND relative performance influence the hybrid selection decision.

Thanks for your attention! Questions?

