HOW DO YOU MANAGE A CORN CROP AFTER STRESS?

Joe Lauer University of Wisconsin

Wisconsin Fertilizer, Ag Lime and Pesticide Management Conference January 18, 2007

Overview

Objective: "Usually making the best of a bad situation"

- Agronomic: In-season management options
 - Re-planting
 - Irrigation
 - Preventative / Prophylactic
- Farmer: Is it peace of mind or stress or revenge?

When is yield determined?

- ✓ Yield implications
- Management decisions following crop stress

Plants are usually subjected to a combination of stresses. Stresses are researched intensely individually; combinations are less so...

Abiotic

- ✓ Cool, wet soils
- ✓ Chilling and Freezing
- ✓ Heat
- ✓ Water (Flood and Drought)
- ✓ Wind
- 🗸 Hail
- ✓ Nutrients
- ✓ Ozone
- 🗸 UV
- ✓ Salinity

Biotic

- ✓ Neighbors (competition)
 - □ Inter- and Intra-plant
- Diseases
- Insects
- ✓ Weeds

In a field, even more combinations of stresses can be occurring due to "patchiness" of abiotic and biotioc stresses interacting with soil and micro-climate.

Total of all US agriculture weather disasters costing \$1 billion or more between 1980 and 2004

Source: Mittler, 2006 and NOAA (http://www.ncdc.noaa.gov/oa/reports/billionz.html)

What is Yield? Yield Components of Corn

Ears per area

http://corn.agronomy.wisc.edu

Lauer © 1994-2007 University of Wisconsin – Agronomy

Critical times in the life of a corn plant

		Yield Components				
Stage	GDUs	Potential	Actual			
VE (Emergence)	125	Ears/area				
V6 (Six leaf collars)	470	Kernel rows/ear	"Factory"			
V12	815		Kernel rows/ear			
V18	1160	Kernels/row				
R1 (Silking)	1250	Kernel weight Ears/area	Kernel number			
R6 (Black layer)	2350		Kernel weight			

Corn Silage Yield and Quality Changes During Development

Expected corn grain yield (percent) for planting dates and harvest populations in Relative Maturity zones of 95-115 d.

Howyoot	Planting date													
population	Apri	il 20	Mag	y 1	Mag	y 10	Ma	y 20	Jur	ne 1	Jun	e 10	Jı	une 20
36000	96	<i>91</i>	99	95	95	<i>93</i>	85	87	63	71	40	55	8	32
34000	97	<i>92</i>	100	<i>96</i>	96	<i>94</i>	85	87	63	72	40	56	8	32
32000	97	<i>92</i>	100	<i>96</i>	96	<i>94</i>	86	87	63	72	40	56	8	32
30000	96	<i>92</i>	(100)	<i>96</i>	96	<i>94</i>	(85)	87	63	72	40	56	8	32
28000	96	<i>91</i>	99	95	95	<i>93</i>	84	86	63	71	40	55	8	32
26000	94	89	97	<i>93</i>	93	<i>92</i>	83	85	62	<i>70</i>	39	54	8	<i>31</i>
24000	92	87	95	<i>91</i>	91	89	81	<i>83</i>	60	<i>68</i>	38	<i>53</i>	7	<i>31</i>
22000	89	85	92	88	89	87	79	<i>81</i>	58	66	37	51	7	30
20000	86	<i>82</i>	89	85	85	<i>84</i>	76	78	56	<i>64</i>	36	<i>49</i>	7	<i>29</i>
18000	82	78	85	<i>81</i>	82	80	72	74	54	<i>61</i>	34	<i>4</i> 7	7	27
16000	78	74	80	77	77	76	68	<i>70</i>	51	58	32	<i>45</i>	6	26
14000	73	<i>69</i>	(75)	72	72	71	64	65	47	54	30	<i>42</i>	6	24
12000	67	<i>64</i>	69	<i>66</i>	67	<i>65</i>	59	60	44	50	28	<i>38</i>	5	22
10000	61	58	63	60	60	<i>59</i>	54	55	40	<i>45</i>	25	35	5	20

Figures for shorter-season hybrids are in italics.

Source: Lauer, 1997

http://corn.agronomy.wisc.edu

Lauer © 1994-2007 University of Wisconsin – Agronomy

Agriculturally Important Stress Combinations

Source: Mittler, 2006

http://corn.agronomy.wisc.edu Unive

Lauer © 1994-2007 University of Wisconsin – Agronomy

Management after Abiotic Stress

Know the health and position of the growing point ...

- Frost
- Flooding
- Re-planting

Determining Success of Pollination

Shake test

- Carefully unwrap ear and shake
- ✓ Silks on fertilized ovules fall off

or

 Wait 10 d and developing ovules will appear as watery blisters.

Corn Grain Yield Loss Due to Defoliation

	Percent leaf area destroyed							
	20	40	60	80	100			
7 Leaf Stage	0	1	4	6	9			
12 Leaf Stage	1	5	11	18	28			
17 Leaf Stage	4	13	28	48	72			
Tassel	7	21	42	68	100			
Silked	7	20	39	65	97			
Blister	5	16	30	50	73			
Milk	3	12	24	41	59			
Dough	2	8	17	29	41			
Dent	0	4	10	17	23			
Black layer	0	0	0	0	0			

Source: derived from National Crop Insurance Service Bulletin

Corn Grain and Silage Yield Loss Due to Defoliation

http://corn.agronomy.wisc.edu

Lauer © 1994-2007 University of Wisconsin – Agronomy

Grain yield loss after plants killed or defoliated

Corn Development Stage	Plants Killed	Plants Defoliated			
	percent yield loss				
R4 (Soft dough)	55	35			
R5 (Dent)	40	25			
R5.5 (50% kernel milk)	12	5			
R6 (Black layer)	0	0			

Source: derived from Afuakwa and Crookston, 1984

Estimated corn evapotranspiration and yield loss per stress day during various stages of growth

		Percent yield loss per day of stress
Growth stage	Evapotranspiration	(min-ave-max)
	inches per day	%
Seedling to 4 leaf	0.06	
4 leaf to 8 leaf	0.10	
8 leaf to 12 leaf	0.18	
12 leaf to 16 leaf	0.21	2.1 - 3.0 - 3.7
16 leaf to tasseling	0.33	2.5 - 3.2 - 4.0
Pollination (R1)	0.33	3.0 - 6.8 - 8.0
Blister (R2)	0.33	3.0 - 4.2 - 6.0
Milk (R3)	0.26	3.0 - 4.2 - 5.8
Dough (R4)	0.26	3.0 - 4.0 - 5.0
Dent (R5)	0.26	2.5 - 3.0 - 4.0
Maturity (R6)	0.23	0.0

Source: derived from Rhoads and Bennett (1990) and Shaw (1988)

Corn forage yield and quality with differing amounts of pollination

Ear fill	Forage yield	Crude protein	NDF	ADF	IVTD	NDFD
%	% of control	%	%	%	%	%
0	81	8.5	57	30	74	52
54	93	8.0	54	28	76	52
100 (control)	100	7.5	49	26	77	54
LSD (0.05)	6	0.3	1	1	1	1

Source: derived from Coors et al., 1997

Summary

Abiotic	Corn Growth Stage						
Stress	VE	V6	V12	V18	R1	R6	
	Grain Yield Loss (%)						
Frost <28F	0	100	100	100	100	0	
Hail (max)	0	53	81	100	100	0	
Drought/Heat (%/day)			3	4	7	0	
Flooding<48h	Severe	0	0	0	0	0	

What about interactions with fertility, disease, insects, weeds and pesticides?

Summary continued ...

 Crops rarely have one stress; usually a combination of stresses occur

- ✓ "All bets are off" as to what will happen
- ✓ Modern hybrids seem to be able to withstand more stress

Early stress

- ✓ Determine whether to Re-plant:
 - Determine plant population
 - Assess the unevenness of stand
 - Calculate replanting costs

Late stress

- ✓ Determine success of pollination
 - Good: harvest in normal fashion for either grain or silage
 - □ Bad: some kernels developing, leave for corn silage harvest
 - Ugly: harvest as close to flowering as possible, but must be concerned about moisture of forage

Lauer © 1994-2007 University of Wisconsin – Agronomy

Evaluate plant health Compare yield of reduced to re-planted stand Factor risks of re-planting

Summary continued ...

Problems to be aware of:

- Harvest timing and influence of moisture on storage as silage, HMC, or dry grain
- ✓ Raising the cutter bar
- ✓ Nitrate poisoning
- Estimating yield impact of stress
 - ✓ Grain yield method
 - Plant height method

- Accurately calculate the economics and value of grain v. silage
 - ✓ Difficult under best of circumstances

Thanks for your attention! Questions?

February 1-2, 2007 Kalahari Resort Wisconsin Dells, WI

