IS THE CORN-SOYBEAN ROTATION IN TROUBLE? EVIDENCE FROM THE LANCASTER ROTATION EXPERIMENT

Joe Lauer and Trent Stanger University of Wisconsin

Wisconsin Fertilizer, Ag Lime and Pesticide Management Conference January 18, 2007

<u>Extension</u>

http://corn.agronomy.wisc.edu

Lauer © 1994-2006 University of Wisconsin – Agronomy

Overview

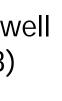
Crop Rotation Research

- "Black box" of agronomy
- ✓ What is our understanding?

Long-term Cropping Systems "The Lancaster Experiment"

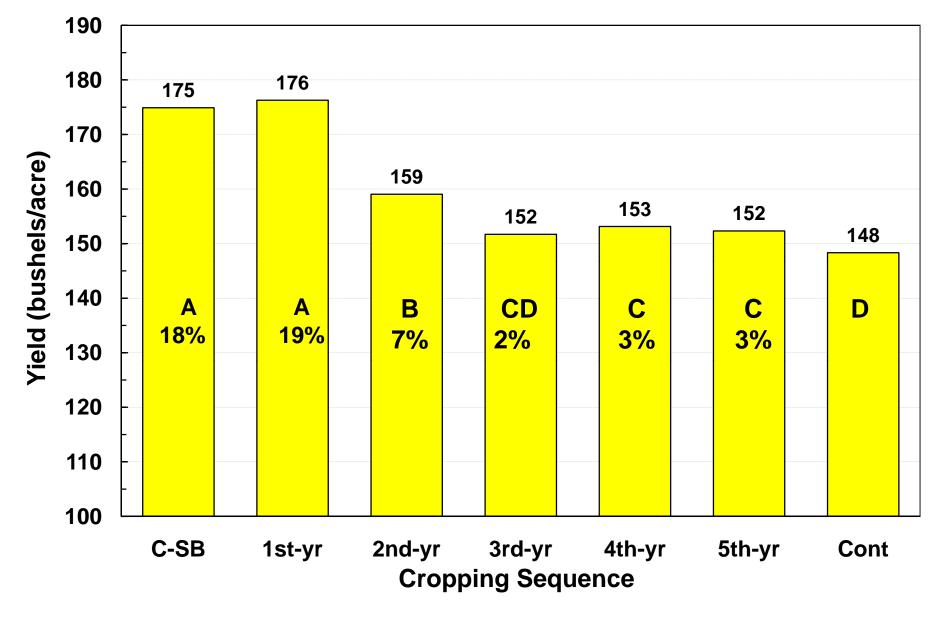
- Is corn grain yield changing with time?
- Can crop systems improve (or deteriorate) over time?

Economics?


Crop Rotation Research – The Rotation Effect – What is it?

Crop Rotation

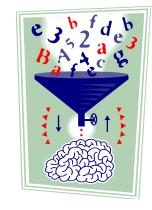
- Universal management practice
- Proven management decision that increases crop yields
- Currently, increased economic benefit for monoculture


Rotation Effect

- Additional benefit of rotating crops
 - production inputs optimized
 - problems associated with monoculture are not apparent.
- \checkmark The effect of all conditions, other than N, supplied by legumes in a rotation (Baldock et al. 1991)
- Other non-legume crops can provide benefits as well (Robinson, 1966; Langer and Randall, 1981; Crookston et al., 1988)

Corn Yield Response Following Five Years of Soybean (Arlington, WI; 1987 to 2005; Control Treatments)

Corn Yield Response to N Following Five Years of Soybean (Arlington, WI; 1987 to 1994; Average of Tillage Treatments)



Crop Rotation Research – What Have We Learned?

- 1st Century B.C.: Varro recognized rotation effect improved crop production (Baldock et al., 1981)
- Pre 1950s: Farmers recognized the importance of rotation because of few options for fertility and pest management
- 1950s and 60s: Practice of corn and soybean monoculture became popular
 - Chemical fertilizers and pesticides
 - ✓ Rotation effect though to be N related
- 1970s: Recognition that all rotation effects could not be overcome.
 - ✓ Allelopathic effects from weeds (Bhowmik and Doll, 1984)
 - ✓ Separation of N effects and non-N effects (Baldock et al., 1981)

Crop Rotation Research – What Have We Learned?

• 1980s: What does crop rotation do in the system?

- ✓ Improve soil moisture (Roder et al., 1989)
- ✓ Improve soil structure (Dick and Van Doren, 1985; Griffith et al., 1986)
- ✓ Increases beneficial soil microbes (Cook, 1984)
- ✓ Decreases pests (Cook, 1984; Dabney et al., 1988)

✓ Decreases phytotoxic compounds from crop residues (Yackle and Cruse, 1984)

1990s: Series of experiments to eliminate factors

- ✓ Above-ground residue has no effect (Crookston and Kurle, 1989)
- ✓ Host-specific pathogens do not account for the rotation effect (Whiting and Crookston, 1993)
- ✓ Root development differences observed (Nickel et al., 1995)
- Management recommendations provided and rotation effect better quantified (Meese et al., 1991; Porter et al., 1997, 1998; and many more)

2000s: Serious questions about sustainability in monoculture and two crop rotations

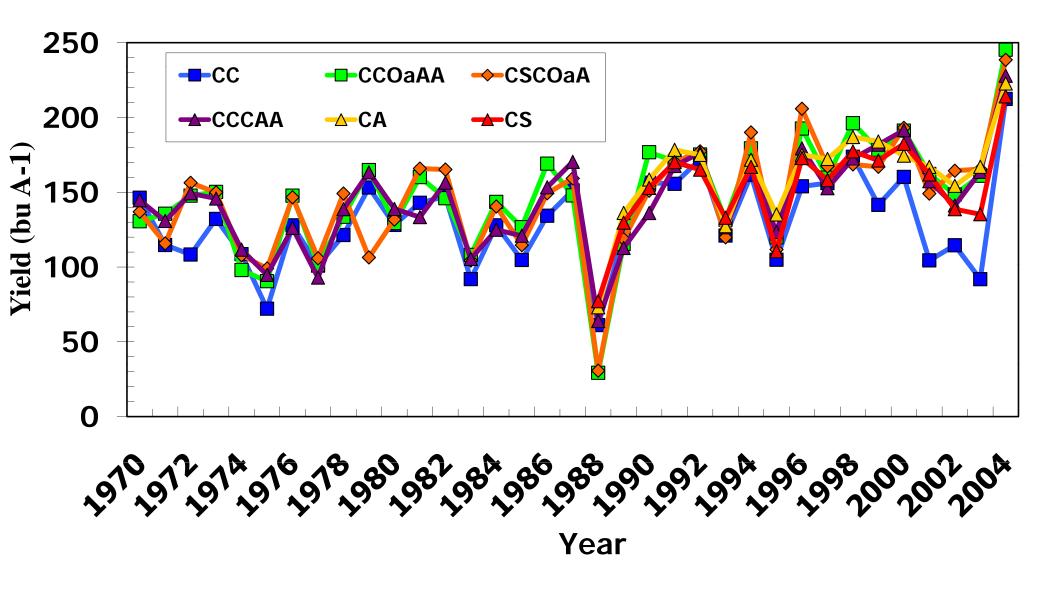
✓ Use long-term crop rotation experiments

The Lancaster Rotation Experiment A Long-Term Cropping System Study

- A multiple crop rotation experiment established in 1966
- Objective: To compare the benefits of growing corn continuously and in rotation using commercial nitrogen fertilizer.
- RCB in a split-plot arrangement with two replications.
 - ✓ Main-plots = 21 rotations
 - ✓ Split-plots= four N levels in corn

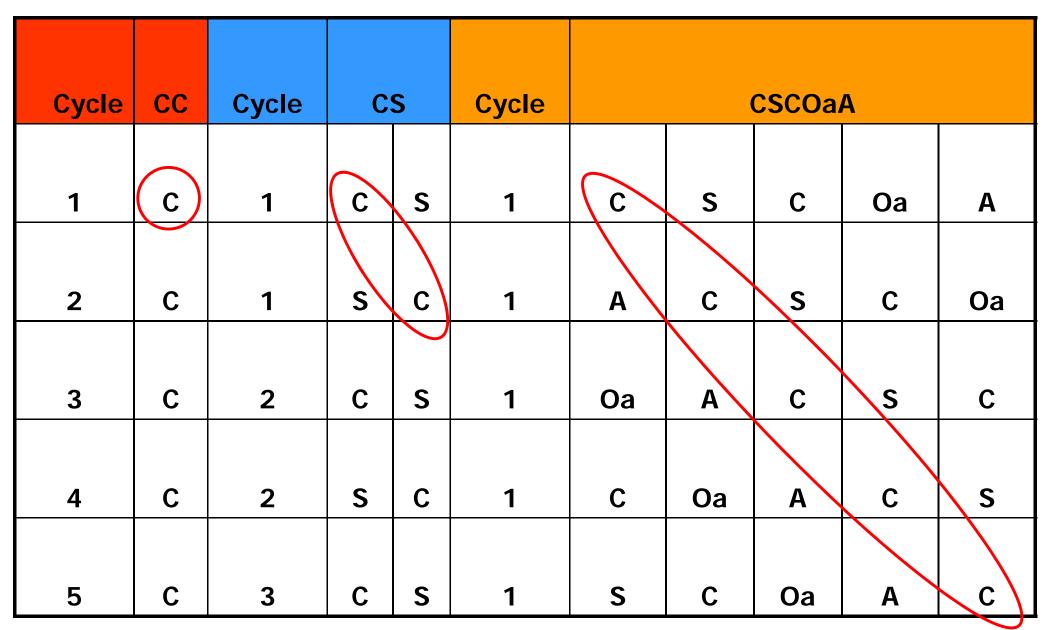
http://corn.agronomy.wisc.edu

Lauer © 1994-2006 University of Wisconsin – Agronomy

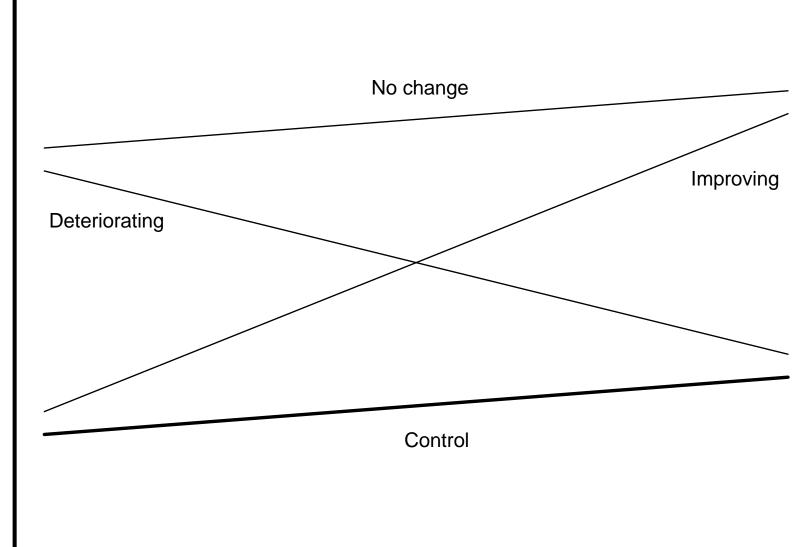

Rotation History of the Lancaster Rotation Experiment

Year of change			Rota		Corn N rates (Ibs N A ⁻¹)		
1966	СС	CSCOaA	CCCOaA	CCOaAA	CC	DaAAA	0, 75, 150, & 300
1977	сс	CSCOaA	CCCAA	CCOaAA	CC	AA AA	0, 50, 100, & 200
1987	СС	CSCOaA	CCCAA	CCOaAA	CS	CA AA	0, 50, 100, & 200
2005	СС	CSCOaA	CCCAA	CCOaAA	CS	C SW	0, 50, 100, & 200

C, Corn; S, Soybean; Oa, Oat with alfalfa seeding; A, Alfalfa; W, Wheat
C, first phase; C, second phase; C, third phase



Corn Yields in the Lancaster Rotation Experiment (Analysis over time: 1970-2004)



Analysis over Time and Space (2-yr and 5-yr Cycles)

What are we looking for? How can we tell whether a cropping system is changing?

Is Corn Grain Yield Changing? (Is there a slope?) First Corn Phase in 5-yr Cycles (1970 – 2004; 7 Cycles)

	N rate (Ib N A ⁻¹)			
Rotation	0	50	100	200
	<u>bu A⁻¹ yr⁻¹</u>			
CC	NS	NS	NS	t
CCAA	1.2**	1.1**	1.4**	1.6**
COaAA	1.3**	1.2**	1.5**	1.6***
C SCOaA	1.2**	1.1**	1.4***	1.6***

t, *, **, *** Significant at the 0.10, 0.05, 0.01, and 0.001 levels

Is Corn Grain Yield Changing? (Is there a slope?) Second Corn Phase in 5-yr Cycles (1970 – 2004; 7 Cycles)

	N rate (Ib N A ⁻¹)			
Rotation	0	50	100	200
	<u>bu A⁻¹ yr⁻¹</u>			
CC	NS	NS	NS	t
CCCAA	NS	NS	NS	1.0*
CC OaAA	NS	NS	t	1.1*
CSC OaA	NS	NS	0.9*	1.2**

t, *, **, *** Significant at the 0.10, 0.05, 0.01, and 0.001 levels

Is Corn Grain Yield Changing? (Is there a slope?) Third Corn Phase in 5-yr Cycles (1970 – 2004; 7 Cycles)

	N rate (Ib N A ⁻¹)			
Rotation	0	50	100	200
	<u>bu A⁻¹ yr⁻¹</u>			
CC	NS	NS	NS	0.9*
CCCAA	NS	NS	NS	0.9**

†, *, **, *** Significant at the 0.10, 0.05, 0.01, and 0.001 levels

Is Corn Grain Yield Changing? (Is there a slope?) Corn in 2-yr Cycles (1989 – 2004; 8 Cycles)

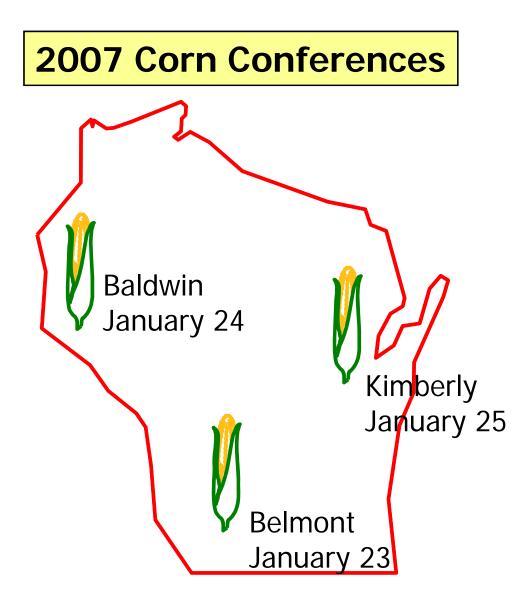
	N rate (Ib N A ⁻¹)			
Rotation	0	50	100	200
	<u>bu A⁻¹ yr⁻¹</u>			
CC	NS	NS	NS	NS
CA	t	NS	NS	NS
CS	-3.0*	NS	NS	NS

†, *, **, *** Significant at the 0.10, 0.05, 0.01, and 0.001 levels

Are Rotations Improving or Deteriorating? (Do slopes diverge or converge?) 5-yr vs. 2-yr Rotations in 5-yr Cycles (1990 – 2004; 3 Cycles)

	N rate (Ib N A ⁻¹)				
Rotation	0	50	100	200	
	bu A ⁻¹ yr ⁻¹				
CC vs. CA	-3.8***	NS	NS	NS	
CC vs. CS	-4.1***	NS	NS	NS	
CC vs. CCAA	NS	NS	2.5*	2.6*	
CC vs. COaAA	NS	NS	NS	NS	
CC vs. CSCOaA	NS	NS	NS	2.5*	
CA vs. CS	NS	NS	NS	NS	
CA vs. CCAA	3.0***	NS	NS	NS	
CA vs. COaAA	2.7*	†	NS	NS	
CA vs. CSCOaA	2.7*	NS	NS	NS	
CS vs. CCAA	3.3***	2.5*	NS	NS	
CS vs. COaAA	3.0***	2.7*	NS	NS	
CS vs. CSCOaA	2.9***	NS	NS	NS	

†, *, **, *** Significant at the 0.10, 0.05, 0.01, and 0.001 levels


Conclusions

- Corn grain yield of extended (5-yr) rotations increase at a greater rate over time than 2-yr rotations and CC.
- Nitrogen plays a major role in maintaining and improving corn grain yields in the absence of crop rotation.
- Extended rotations involving forage crops may be more sustainable than current short-term agricultural practices, because time (>2 yr) along with rotation and nitrogen were required to improve corn grain yields.

Thanks for your attention! Questions?

February 1-2, 2007 Kalahari Resort Wisconsin Dells, WI

