Impacts of the 2004 Growing Season on Silage Quality

Joe Lauer University of Wisconsin

http://corn.agronomy.wisc.edu

Objectives

- To describe the weather impact on the 2004 corn silage crop.
 - ✓ "Mission impossible?"
- To describe what is known about weather and management effects on silage quality.
- What should we be thinking about as we head into 2005?

Corn Production during 2004

- Record grain yields in southwestern Wisconsin
- Opportunities for early planting date in most of Wisconsin
 - ✓ After May 5 late (June) planting dates in eastern Wisconsin

Growing season

- ✓ Cooler than normal
- ✓ Wetter than normal May and June
- Corn growth and development lagged behind
- ✓ Beautiful September

Lauer © 1994-2005 University of Wisconsin – Agronomy

WISCONSIN CORN RESEARCH HYBRID EVALUATION

Conducted by:

University of Wisconsin-Madison College of Agricultural and Life Sciences Department of Agronomy and University of Wisconsin-Extension Cooperative Extension

Cooperators:

LLEX

Wisconsin Crop Improvement Assoc.
Commercial Seed Companies
Arlington Agricultural Research Station

2004 Wisconsin Corn Performance Trials Silage Summary

	<u>1994-</u>	1994-2003)04	Percent
Location	Ν	Yield	Ν	Yield	change
Arlington	491	9.4	52	9.7	2
Lancaster	491	7.9	52	10.1	27
Fond du Lac	476	8.5	57	7.7	-10
Galesville	477	8.6	61	9.1	6
Chippewa Falls	104	7.5	51	8.1	8
Marshfield	486	6.8	52	7.1	5
Valders	491	6.6	52	8.5	28
Rhinelander	42	6.3	27	6.4	2
Spooner	84	6.6	54	7.9	19

Corn Forage Milk per Ton (lb/A) Response to Year in the UW Corn Trials (N= 11,292 plots)

http://corn.agronomy.wisc.edu

Corn Forage NDFD (%) Response to Year in the UW Corn Trials (N= 11,292 plots)

http://corn.agronomy.wisc.edu

Corn Forage Starch Content (%) Response to Year in the UW Corn Trials (N= 11,292 plots)

http://corn.agronomy.wisc.edu

Corn Silage Yield and Quality During Development

http://corn.agronomy.wisc.edu

University of Wisconsin – Agronomy

Changes in corn forage yield and quality with harvest date

Each value = mean of 4 hybrids and 4 reps (derived from Darby and Lauer, 2002)

http://corn.agronomy.wisc.edu

The Yield And Quality Response Of Corn Silage To Climatic Effects And Cultural Practices

Factor	Forage Yield	Dry matter digestibility	NDF	NDFD
Increasing temperature	+	-	+	-
Increasing light intensity	+	+	-	<u>+</u>
Increasing stand density	+	-	+	<u>+</u>
Delayed planting date	-	-	+	<u>+</u>
Delayed harvest date	-	-	+	-
Increasing N rate	+	-	+	<u>+</u>

Source: (Struik, 1983) and (Deinum and Struik, 1989) as modified by (Coors and Lauer, 2001).

Summary

- Difficult to determine how weather influenced the quality of the 2004 corn silage crop.
 - Cool weather would slow development rate.
 - Late planting coupled with a "cool" growing season would likely produce a less mature crop at harvest.
- Most quality differences might be related more to maturity at harvest.
 - ✓ NDFD would be increased.
 - ✓ Starch content would be decreased.
 - ✓ Milk per Ton would not be affected.
- Recommendations for 2005 are unchanged "Do what you would normally do to optimize grain yield."

The End of the Row – Questions? Thanks for your attention!

