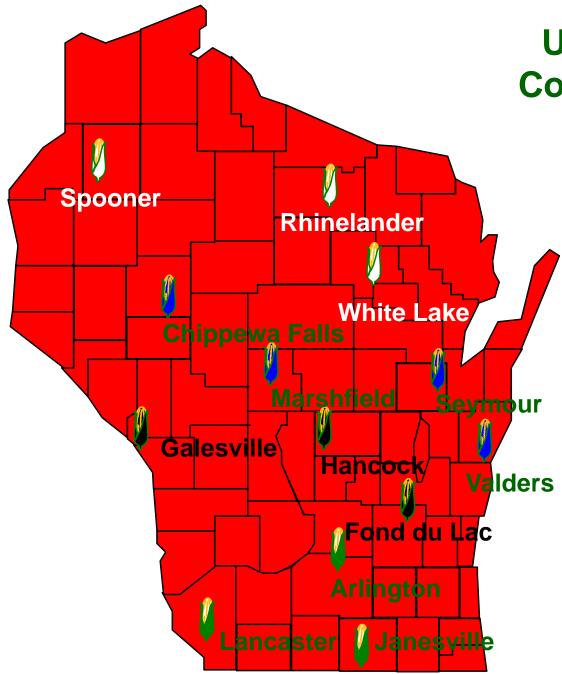


# Overview for Agronomy Update Meetings 2003

- Review of 2002 corn production season
  - ✓ Changes to UW Corn Agronomy program
  - ✓ Top corn hybrid performances
  - ✓ Transgenic hybrids
- Risk in Agronomic Decisions
  - Calculating grower return
  - ✓ Plant density
  - ✓ Planting date and hybrid maturity switch dates
  - ✓ Corn Soybean Rotations
- Summary and Looking Ahead to 2003






#### **Corn Observations For 2002**



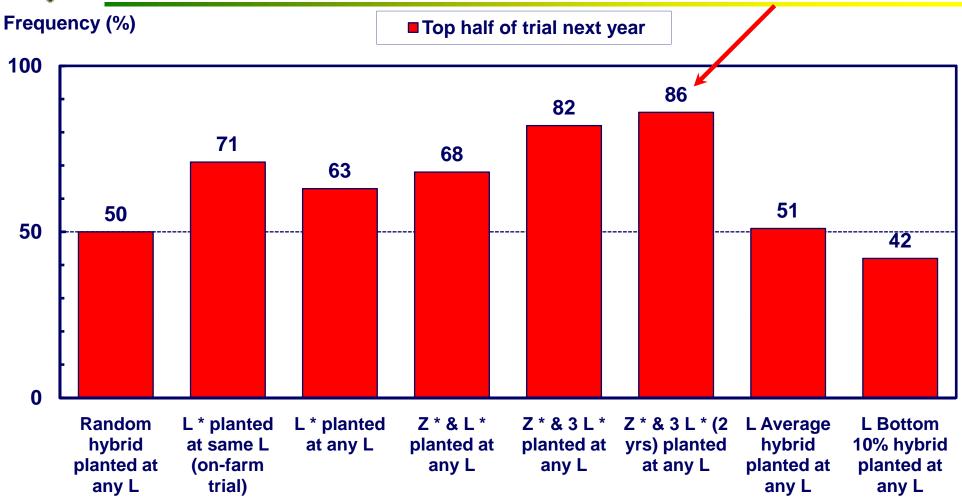
Corn plots on 5 June at Galesville, WI

- High corn yields in western WI.
- Spring planting conditions were warm and dry during April, followed by cool and wet weather during early May resulting in an overall slow start for corn. Growth caught up by early July with hot, dry weather.
- For the second year in a row, drought conditions existed during the pollination and grain-filling periods in the northeast.
- Timely rains in western Wisconsin resulted in favorable pollination conditions.
- Corn silage harvest started slightly later than normal.
- Killing frost did not occur until mid-October.
- Excellent plant standability was observed in most trials.



#### University of Wisconsin Corn Agronomy Program

#### <u>New for 2002</u>


Added corn silage test sites in Chippewa Falls, Rhinelander, and Spooner. Dropped Ashland site.

Hybrid names on silage trial graphs

Two-year average calculated for yield in grain and silage programs.



#### Hybrid Selection Strategies Using WI Results 1973-1998 (L=Location, Z=Zone)







#### 2002 Wisconsin Corn Performance Trials Grain Summary

|                | <u> 1992-</u> | 2001  | <u>200</u> | 2     | Percent |
|----------------|---------------|-------|------------|-------|---------|
| Location       | Ν             | Yield | Ν          | Yield | change  |
| Arlington      | 1846          | 196   | 173        | 191   | -3      |
| Janesville     | 1846          | 189   | 175        | 194   | 3       |
| Lancaster      | 1846          | 177   | 175        | 206   | 16      |
| Fond du Lac    | 1628          | 166   | 148        | 184   | 11      |
| Galesville     | 1628          | 163   | 148        | 214   | 31      |
| Hancock        | 1627          | 183   | 148        | 229   | 25      |
| Chippewa Falls | 1508          | 151   | 150        | 156   | 3       |
| Marshfield     | 1199          | 149   | 150        | 199   | 34      |
| Seymour        | 1117          | 151   | 74         | 171   | 13      |
| Valders        | 1508          | 144   | 150        | 137   | -5      |
| Spooner        | 1869          | 129   | 120        | 158   | 22      |
| White Lake     | 624           | 95    | 40         | 145   | 53      |
|                |               |       |            |       |         |

Note: Seymour average includes New London - 1992.





#### Top 10 Corn Grain Hybrids in the Southern Production Zones during 2002

| Hybrid                 | Yield | Moisture | Hybrid               | Yield | Moisture |
|------------------------|-------|----------|----------------------|-------|----------|
| Southern zone          | bu/A  | %        | South central zone   | bu/A  | %        |
| Dekalb DKC6019         | 236   | 25.8     | Crows C217B *        | 241   | 23.5     |
| Agrigold A6333Bt       | 235   | 23.9     | Pioneer 36R11 *      | 241   | 23.6     |
| Pioneer 33A14          | 227   | 27.7     | Lemke 6068Bt *       | 241   | 30.2     |
| Pioneer 34N44          | 225   | 25.0     | Kaltenberg K5151Bt * | 240   | 23.4     |
| Dekalb DKC5878         | 224   | 22.5     | Pioneer 35Y55 *      | 240   | 26.4     |
| Wyffels W7273          | 224   | 26.1     | Midwest G7101B *     | 240   | 23.1     |
| Jung 6710Bt            | 223   | 26.2     | Cargill 4521Bt       | 238   | 23.3     |
| Agrigold A6395         | 222   | 23.4     | Dahlman D5102Bt      | 238   | 23.0     |
| Garst / Agripro 9476Bt | 222   | 23.8     | Dahlco X1021Bt       | 238   | 23.1     |
| Kussmaul K408          | 222   | 24.4     | High Cycle 7525Bt    | 237   | 23.3     |

\* = Top 50 Corn Hybrid Performances since 1972 in Wisconsin





#### Top 10 Corn Grain Hybrids in the Northern Production Zones during 2002 (\* = Zone Top 10 "All Time")

| Hybrid                    | Yield | Moisture | Hybrid                   | Yield | Moisture |
|---------------------------|-------|----------|--------------------------|-------|----------|
| North central zone        | bu/A  | %        | Northern zone            | bu/A  | %        |
| Pilgrim Seed 8601         | 199   | 26.7     | Pioneer 38A25 *          | 196   | 34.2     |
| Dahlman D4515             | 198   | 25.6     | Kaltenberg K2727Bt *     | 180   | 31.6     |
| Dekalb DKC4446            | 195   | 27.2     | Pioneer 38P06 *          | 176   | 31.5     |
| NK Brand N32L9            | 191   | 26.6     | NK Brand N2555BT         | 171   | 32.2     |
| LG Seeds LG2442           | 191   | 26.1     | Pioneer 39K42            | 170   | 31.1     |
| Dekalb DKC4628            | 190   | 27.3     | Dahlco 2075Bt            | 169   | 36.4     |
| Dekalb DKC4442            | 189   | 27.9     | Dairyland Stealth 1089Bt | 168   | 32.7     |
| Dahlco X1021Bt            | 189   | 28.9     | Growmark FS1762          | 168   | 30.8     |
| Growmark FS4042Bt         | 189   | 29.1     | Golden Harvest H6675     | 168   | 31.7     |
| Carharts Blue Top CR102RB | 188   | 28.3     | Renk RK232Bt             | 167   | 32.8     |

\* = Top 10 Corn Hybrid Performance in the Zone





#### 2002 Wisconsin Corn Performance Trials Silage Summary

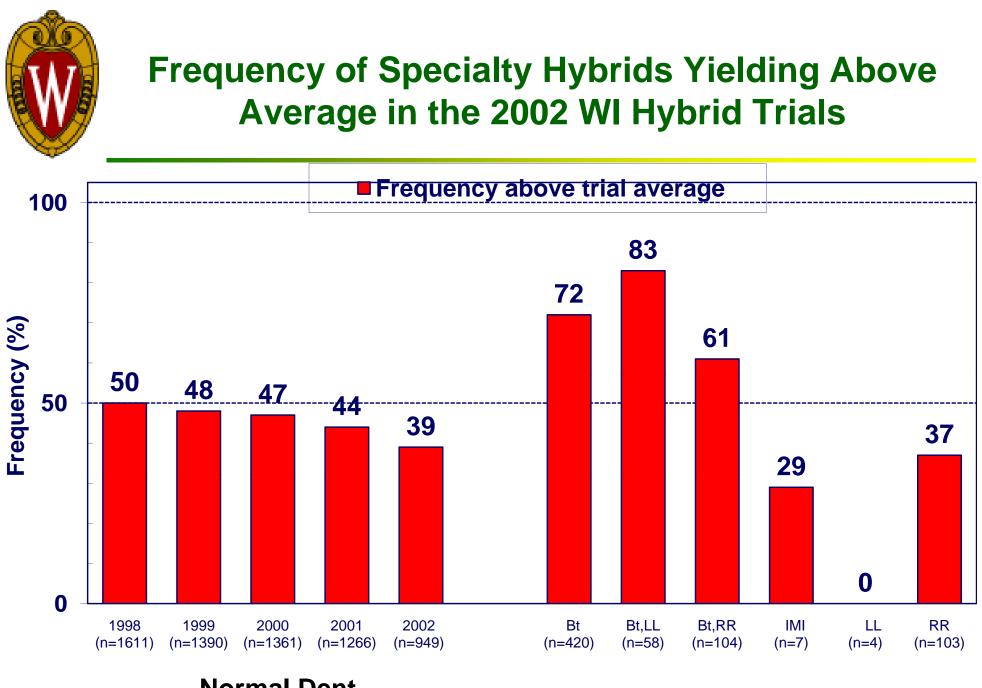
|                | 1992-2 | 2001  | 20 | 02    | Percent |
|----------------|--------|-------|----|-------|---------|
| Location       | Ν      | Yield | Ν  | Yield | change  |
| Arlington      | 438    | 9.4   | 56 | 8.8   | -7      |
| Lancaster      | 386    | 7.8   | 56 | 8.6   | 10      |
| Fond du Lac    | 352    | 8.6   | 65 | 8.7   | 1       |
| Galesville     | 352    | 8.3   | 65 | 9.8   | 18      |
| Chippewa Falls | 4      | 7.3   | 53 | 8.0   | 8       |
| Marshfield     | 408    | 6.8   | 53 | 8.0   | 18      |
| Valders        | 387    | 6.7   | 53 | 5.5   | -18     |
| Rhinelander    |        |       | 17 | 7.0   |         |
| Spooner        |        |       | 34 | 8.3   |         |





#### Top 10 Corn Silage Hybrids in the Southern Production Zones during 2002

| Hybrid                 | Yield | Hybrid                      | Yield |
|------------------------|-------|-----------------------------|-------|
| Southern zone          | T/A   | South central zone          | T/A   |
| Pioneer 34M95 *        | 10.7  | Pioneer 34M95 *             | 11.0  |
| Cornelius C590YG       | 10.3  | NK Brand N48V8 *            | 10.6  |
| Golden Harvest H8662Bt | 10.0  | Carharts Blue Top CX1020B * | 10.5  |
| Spangler LFT61         | 9.9   | Pioneer 35R58 *             | 10.4  |
| High Cycle HC540       | 9.9   | Garst 8523IT                | 10.3  |
| NK Brand N65Y3         | 9.9   | Lemke 6068Bt                | 10.2  |
| NK Brand N48V8         | 9.8   | Dahlco 2660                 | 10.2  |
| Spangler 7558G         | 9.8   | Trelay 7095                 | 10.2  |
| Growmark FS6533Bt      | 9.7   | NK Brand N59Q9              | 10.2  |
| Asgrow RX708YG         | 9.5   | Brunner S6408Bt             | 10.2  |






#### Top 10 Corn Silage Hybrids in the Northern Production Zones during 2002

| Hybrid             | Yield | Hybrid                    | Yield |
|--------------------|-------|---------------------------|-------|
| North central zone | T/A   | Northern zone             | T/A   |
| Pioneer 35R58      | 8.4   | Pioneer 38T28             | 9.0   |
| Growmark FS4322    | 8.3   | Pioneer 37D03             | 8.7   |
| Pioneer 35D45      | 8.3   | Carharts Blue Top CX8500A | 8.3   |
| Lemke 4031         | 7.9   | Pioneer 37R71             | 8.3   |
| Dekalb DKC4446     | 7.9   | Geertson GS961            | 8.3   |
| NK Brand N45T5     | 7.8   | Kaltenberg K2727Bt        | 8.1   |
| NK Brand N48V8     | 7.8   | Ragt Semences RH0027      | 8.0   |
| Dekalb DKC5334     | 7.8   | Carharts Blue Top CR8500R | 8.0   |
| Dahlco X0012       | 7.7   | Golden Harvest H6355      | 7.8   |
| NK Brand NX3360    | 7.7   | NK Brand N2555BT          | 7.8   |





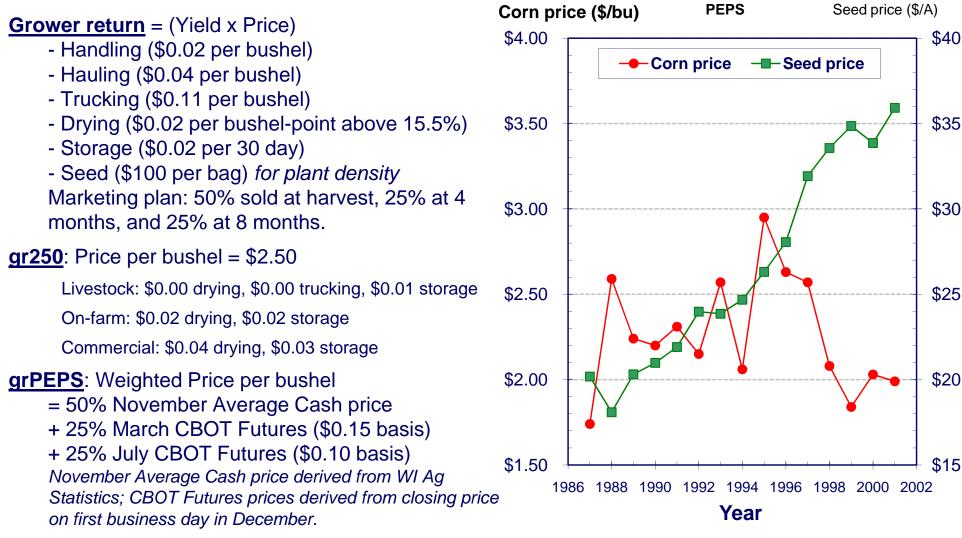
#### **Normal Dent**







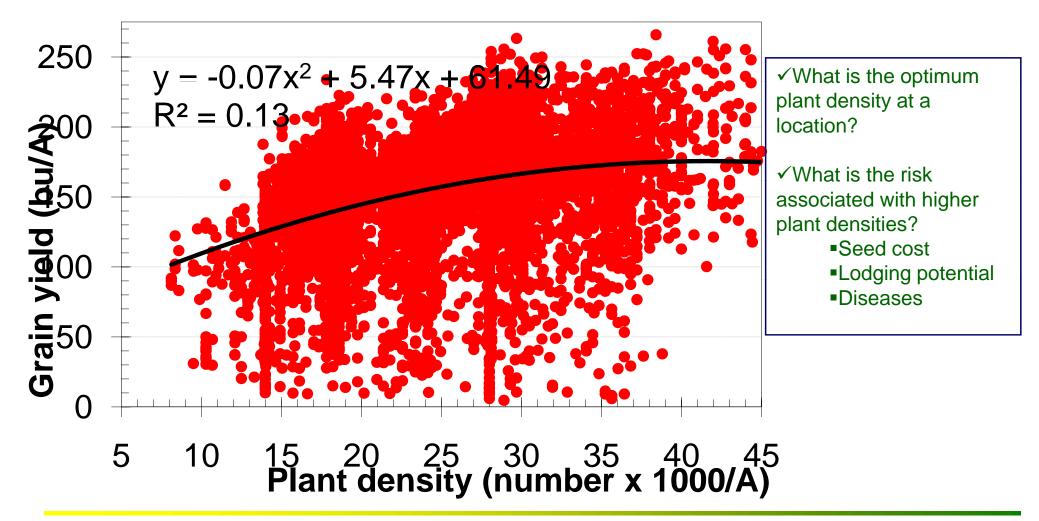
#### **Computer Software for Choosing Crop Varieties**


http://corn.agronomy.wisc.edu



Lauer, © 1994-2003 University of Wisconsin – Agronomy




#### **Calculating Grower Return**







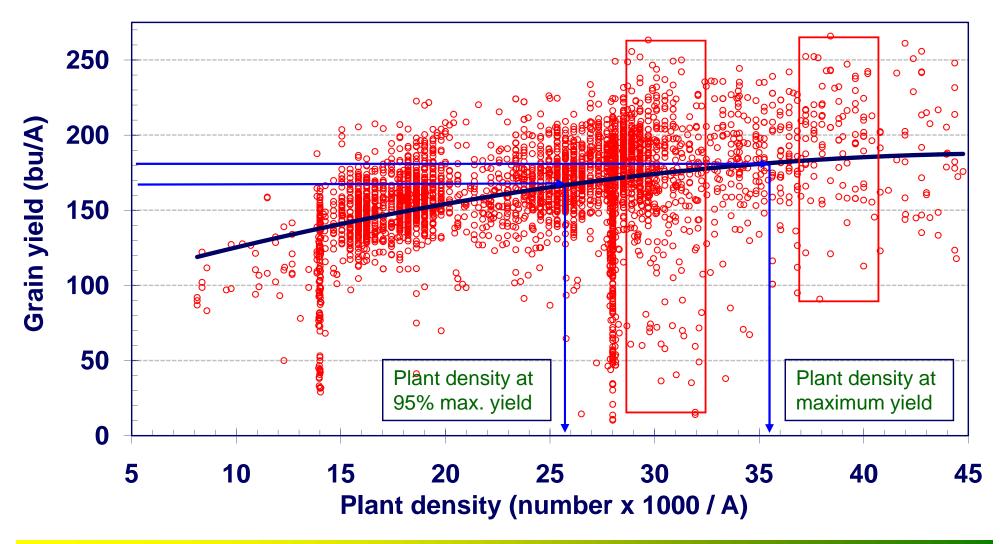
Relationship between grain yield and plant density for corn grown between 1987 and 2001 in Wisconsin (n = 7811 plots)







## Data set used to analyze corn response to plant density in Wisconsin (plots)


| Location        | Ν    | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Arlington       | 3552 | 85   | 94   | 103  | 102  | 186  | 245  | 96   | 128  | 124  | 126  | 312  | 258  | 930  | 816  |      | 32   |
| Ashland         | 144  |      |      |      |      |      |      |      |      |      |      |      |      | 96   |      |      | 48   |
| Chippew a Falls | 139  | 30   |      |      |      |      | 31   |      |      |      |      |      | 36   | 36   |      | 36   |      |
| Fond du Lac     | 230  | 30   |      |      | 32   | 31   | 71   |      |      |      |      |      | 24   | 24   | 24   | 24   |      |
| Galesville      | 96   | 30   |      |      |      |      |      |      |      |      |      |      | 24   | 24   | 24   | 24   |      |
| Hancock         | 215  | 30   |      |      |      |      |      | 71   |      |      |      | 24   | 48   | 24   | 24   | 24   |      |
| Janesville      | 1238 | 30   |      |      | 30   | 32   | 18   |      |      |      |      | 96   | 84   | 930  | 24   | 24   |      |
| Lancaster       | 228  | 30   |      |      |      |      |      | 72   |      |      |      |      | 84   | 24   | 24   | 24   |      |
| Marshfield      | 252  | 30   |      |      |      |      |      |      |      |      |      | 108  | 36   | 36   | 36   | 36   |      |
| New London      | 107  |      |      |      |      |      |      |      |      |      |      |      |      | 36   | 35   | 36   |      |
| Spooner         | 432  | 30   |      |      |      |      |      |      |      |      |      |      | 96   | 96   | 96   | 48   | 96   |
| Valders         | 186  | 30   |      |      | 30   | 30   | 18   |      |      |      |      |      | 36   | 36   | 36   |      |      |

Analyzed a total of 120 locations in 21 states and provinces in the Corn Belt (n= 52,848 plots).





#### Relationship between plant density and grain yield for corn grown between 1987 and 2001 at Arlington, WI (n = 3552 plots)







# Plant density at maximum yield and 95% of maximum yield

|                | Ma    | ximum   | 95% of | Maximum     |
|----------------|-------|---------|--------|-------------|
|                |       | Plant   |        | Plant       |
| Location       | Yield | density | Yield  | density     |
|                | bu/A  | x1000/A | bu/A   | x1000/A     |
| Arlington      | 177   | 35.8    | 168    | 25.7        |
| Janesville     | 184   | 32.7    | 175    | 23.9        |
| Lancaster      | 157   | 32.0    | 150    | 24.4        |
| Fond du Lac    | 168   | 37.8    | 160    | 26.4        |
| Galesville     | 194   | 38.8    | 184    | 28.2        |
| Hancock        | 189   | 43.6    | 180    | <u>38.8</u> |
| Chippewa Falls | 137   | 43.0    | 130    | 28.5        |
| Marshfield     | 125   | 37.2    | 118    | 31.1        |
| New London     | 163   | 37.2    | 155    | 32.3        |
| Valders        | 164   | 42.9    | 156    | 30.4        |
| Ashland        | 85    | 32.7    | 80     | 28.2        |
| Spooner        | 113   | 28.6    | 107    | 22.2        |

 ✓ At five of six northern sites, the relationship between yield and plant density was linear, i.e. yield continued to increase throughout range of plant densities studied.

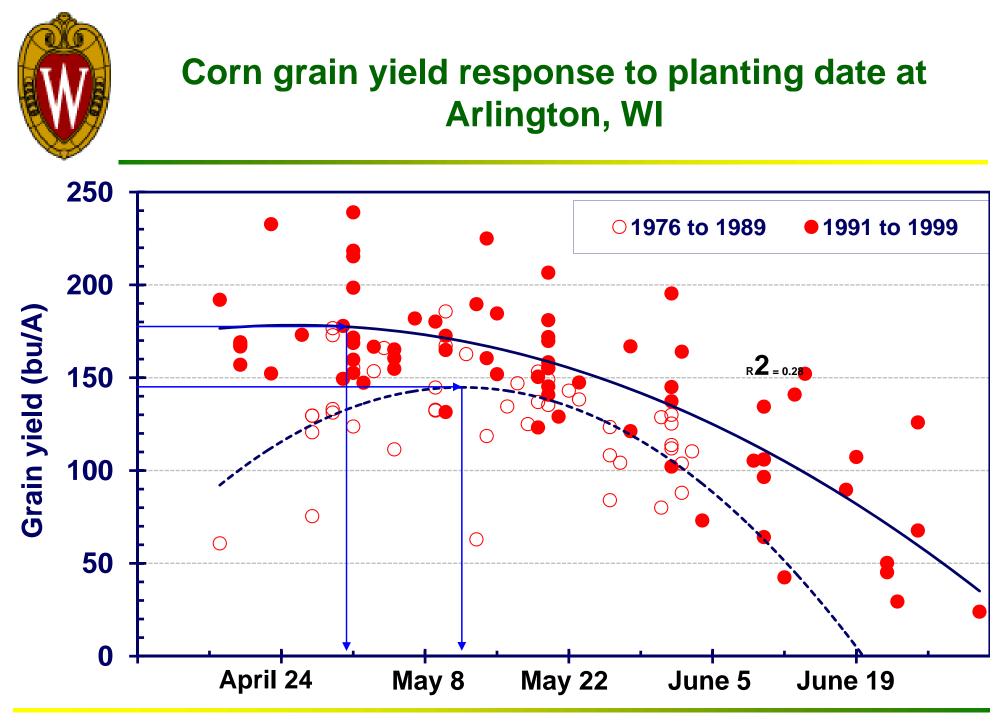
 ✓ Average plant density range between maximum and 95% of max= 8500 plants/A





## Plant Density at Maximum Grower Return and 95% of Maximum Grower Return

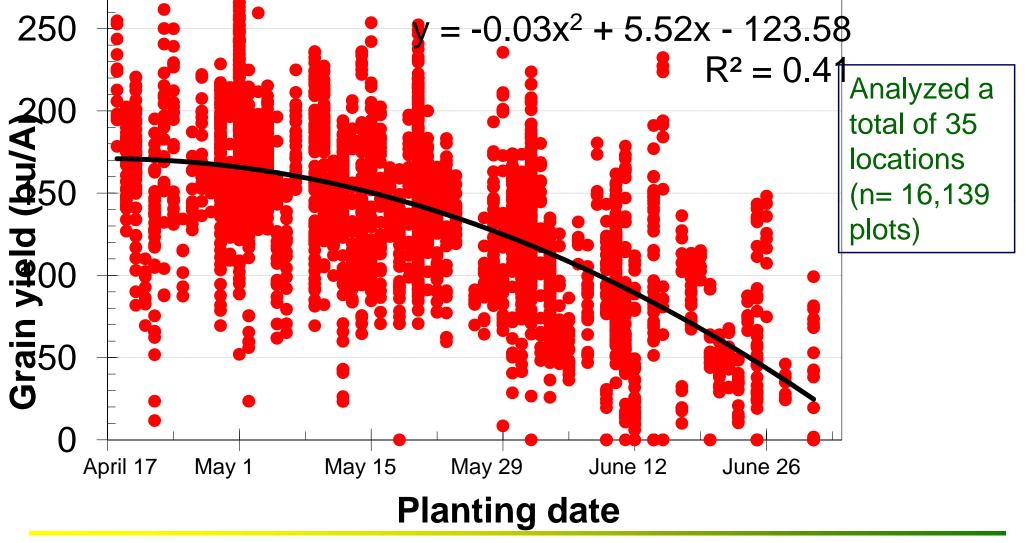
|                | Corn price | e = \$2.50 | Corn price | e = PEPS |                                                                    |
|----------------|------------|------------|------------|----------|--------------------------------------------------------------------|
|                | Maximum    | 95% of     | Maximum    | 95% of   | ✓ Optimum plant densities are lower for                            |
| Location       | return     | Maximum    | return     | Maximum  | \$2.50 corn price than                                             |
|                | x1000/A    | x1000/A    | x1000/A    | x1000/A  | for yield or PEPS                                                  |
| Arlington      | 32.0       | 22.4       | 35.5       | 26.0     | price.                                                             |
| Janesville     | 29.8       | 21.2       | 32.2       | 23.6     | <ul> <li>✓ Average plant</li> <li>density range between</li> </ul> |
| Lancaster      | 29.6       | 22.4       | 32.0       | 25.0     | maximum and 95% of                                                 |
| Fond du Lac    | 33.1       | 22.1       | 37.6       | 26.6     | max=                                                               |
| Galesville     | 34.2       | 24.7       | 37.6       | 27.9     | gr250: 9900 plants/A<br>PEPS: 8400 plants/A                        |
| Hancock        | 43.6       | 37.3       | 43.6       | 39.3     | ✓ For 6 of 12 sites                                                |
| Chippewa Falls | NS         | NS         | 43.0       | 26.6     | trend is linear. Most                                              |
| Marshfield     | 37.2       | 19.3       | 37.2       | 30.8     | are in northern WI                                                 |
| New London     | 37.2       | 30.1       | 37.2       | 32.7     |                                                                    |
| Valders        | 37.2       | 25.7       | 42.1       | 30.6     |                                                                    |
| Ashland        | NS         | NS         | 32.7       | 27.4     |                                                                    |
| Spooner        | NS         | NS         | 28.6       | 21.9     |                                                                    |






#### The Relationship between Yield and Grower Return Risk and Plant Density

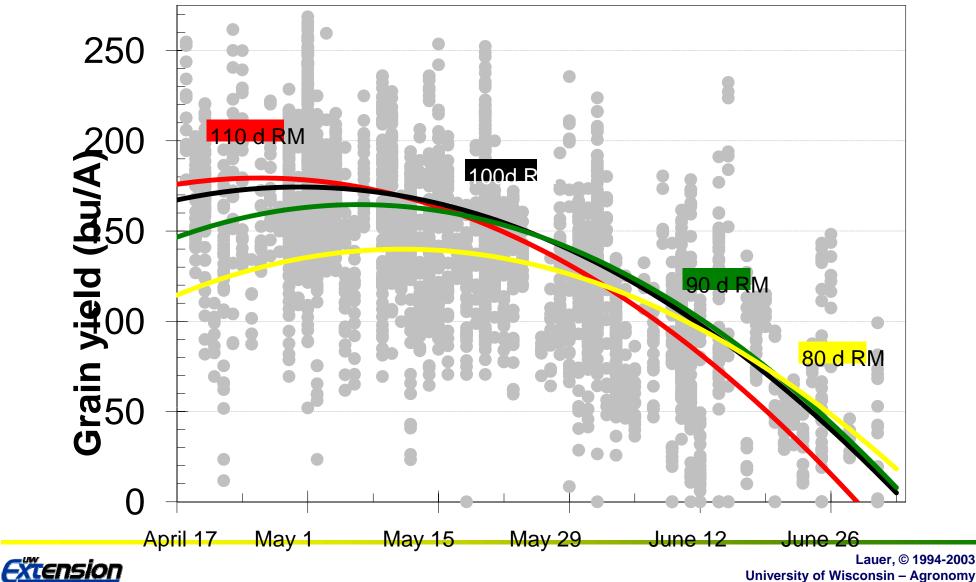
|                |         | Yield         |          | p       | orice = \$2.50 | )        | р       | rice = PEPS   | 6        |
|----------------|---------|---------------|----------|---------|----------------|----------|---------|---------------|----------|
|                |         | 95% of        | 45000    |         | 95% of         | 45000    |         | 95% of        | 45000    |
| Location       | Maximum | maximum       | plants/A | Maximum | maximum        | plants/A | Maximum | maximum       | plants/A |
|                |         | <u>+</u> bu/A |          |         | <u>+</u> \$/A  |          |         | <u>+</u> \$/A |          |
| Arlington      | 9.6     | 8.7           | 10.2     | 14      | 13             | 125      | 13      |               | 107      |
| Janesville     | 7.8     | 7.5           | 8.4      | 11      | 11             | 77       | 11      | 10            | 37       |
| Lancaster      | NS      | NS            | NS       | NS      | NS             | NS       | NS      | NS            | NS       |
| Fond du Lac    | 7.6     | 6.3           | 9.1      | 11      | 9              | 95       | 10      | 9             | 60       |
| Galesville     | 8.5     | 7.5           | 9.1      | 13      | 11             | 91       | 12      | 11            | 81       |
| Hancock        | 9.5     | 8.8           | 9.8      | 14      | 13             | 101      | 14      | 13            | 191      |
| Chippewa Falls | NS      | NS            | NS       | NS      | NS             | NS       | 12      | 9             | 218      |
| Marshfield     | NS      | NS            | NS       | NS      | NS             | NS       | NS      | NS            | NS       |
| New London     | 7.8     | 7.4           | 8.4      | 12      | 11             | 80       | 11      | 11            | 79       |
| Valders        | NS      | NS            | NS       | NS      | NS             | NS       | NS      | NS            | NS       |
| Ashland        | 9.6     | 8.8           | 11.5     | 13      | 12             | 129      | 12      | 11            | 103      |
| Spooner        | 8.0     | 7.3           | 9.6      | 12      | 11             | 98       | 11      | 10            | 88       |






<u>Extension</u>

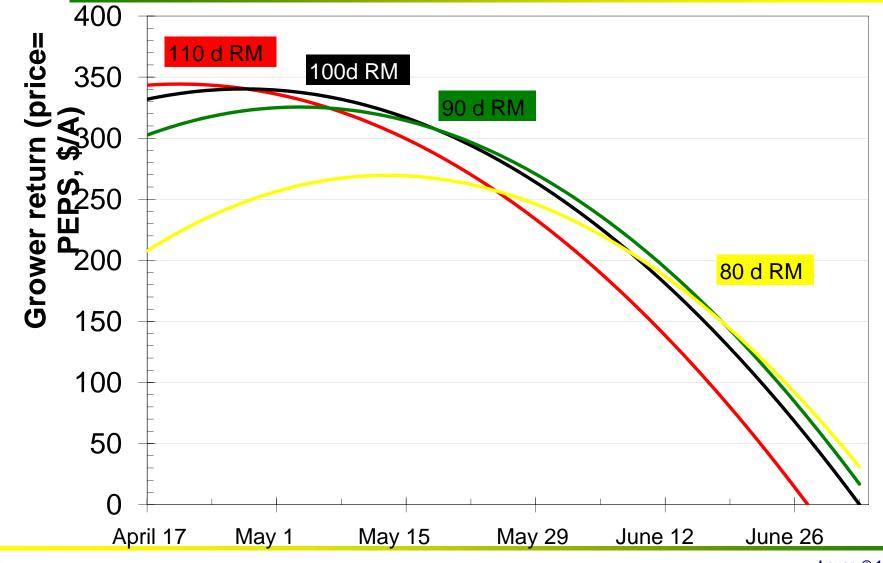
Lauer, © 1994-2003 University of Wisconsin – Agronomy


## Relationship between grain yield and planting date for corn grown between 1974 and 2001 in Wisconsin (n = 2,928 plots)








### **Relationship between grain yield and planting date** for corn RM group at Arlington, WI (1974 to 2001)



University of Wisconsin – Agronomy



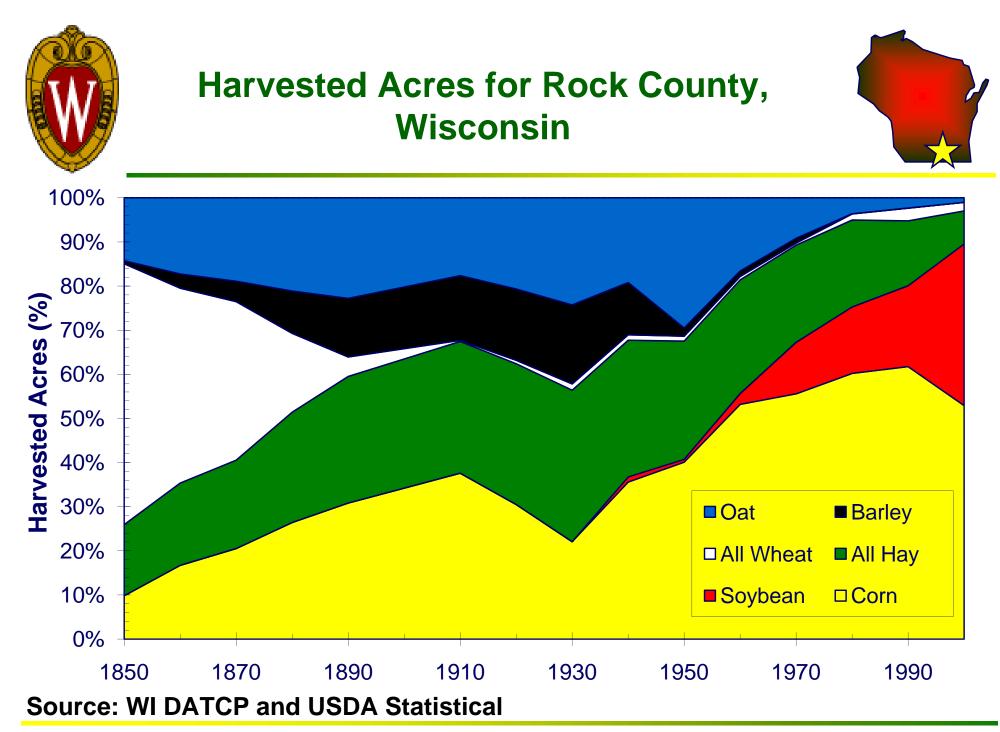
# Relationship between grower return (price = PEPS) and planting date for corn RM group at Arlington, WI (1974 to 2001)



<u>Extension</u>



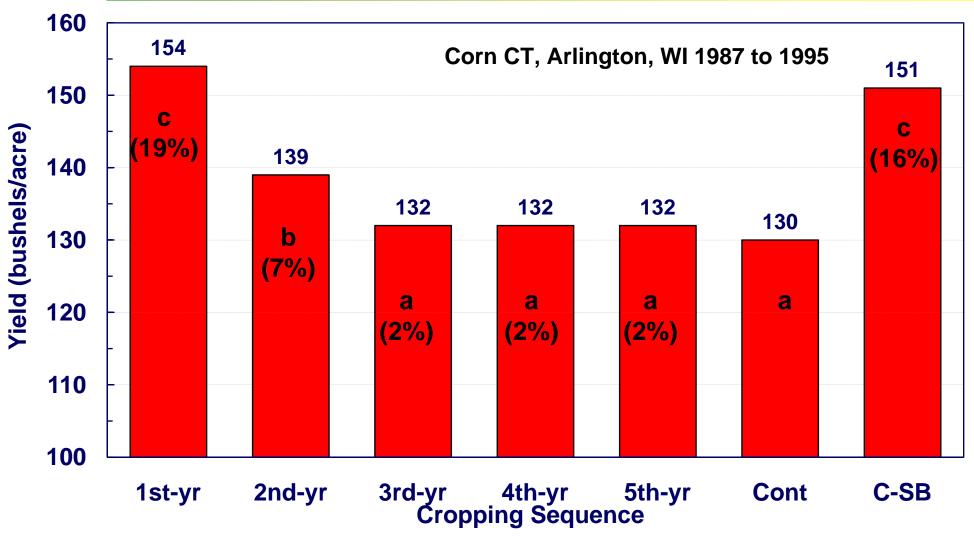
#### Switch Dates for Corn Hybrids in Wisconsin Full- to Shorter-Season Maturity


| Corn       | Drying |        | Corn Price |        |
|------------|--------|--------|------------|--------|
| System     | Cost   | \$2.00 | \$2.50     | \$3.00 |
| Commercial | \$0.04 | May 8  | May 9      | May 11 |
| On-Farm    | \$0.02 | May 14 | May 15     | May 17 |
| Livestock  | \$0.00 | May 20 | May 21     | May 22 |





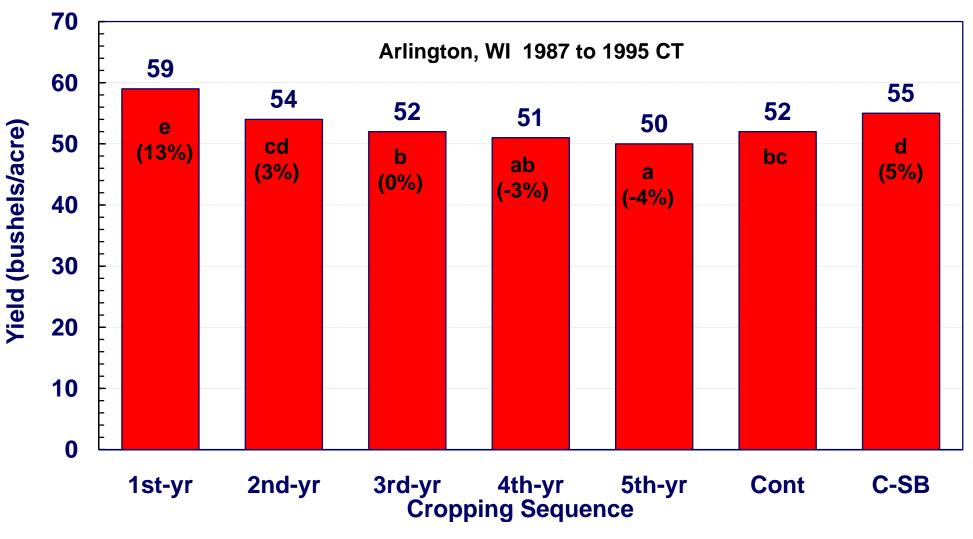



1985








#### Corn Yield Response Following Five Years of Soybean in a Corn-Soybean Rotation







#### Soybean Yield Response Following Five Years of Corn in a Corn/Soybean Rotation







# Risk in corn-soybean rotations at Arlington, WI (1987-2001)

|        |       | Grain         | Yield   |               | Grower return                         |  |  |  |  |
|--------|-------|---------------|---------|---------------|---------------------------------------|--|--|--|--|
|        | Corn  |               | Soybean |               | <u>Corn= \$2.50</u> Soybean= \$4.50   |  |  |  |  |
|        | Yield | Risk          | Yield   | Risk          | Return Risk Return Risk               |  |  |  |  |
|        | bu/A  | <u>+</u> bu/A | bu/A    | <u>+</u> bu/A | \$/A <u>+</u> \$/A \$/A <u>+</u> \$/A |  |  |  |  |
| 1st-yr | 172   | 10            | 60      | 8             | 358 14 252 13                         |  |  |  |  |
| 2nd-yr | 157   | 10            | 57      | 8             | 327 15 238 13                         |  |  |  |  |
| 3rd-yr | 147   | 10            | 54      | 8             | 306 15 228 13                         |  |  |  |  |
| 4th-yr | 141   | 11            | 53      | 8             | 296 15 223 13                         |  |  |  |  |
| 5th-yr | 141   | 11            | 53      | 8             | 295 15 222 13                         |  |  |  |  |

How are high yields achieved with continuous crop systems?





#### Summary

- Optimum plant density is 30,000 plants/A (<u>+</u> 4000-5000 plants/A)
  - ✓ Risk at 45,000 plants/A is 3 to 10x greater than at optimum
  - ✓ Trend is for increasing plant density
- One planting date switch in the north and maybe two dates in southern Wisconsin.
  - ✓ First date around May 15-20 and second date around June 1.
  - ✓ Final planting dates for grain are June 1 and June 10 in north and south. After these dates production system objectives change.
  - ✓ Equal risk at all planting dates
- Yield decreases as crop is continuously grown. Equal risk is observed at all years in continuous v. rotated crops.





#### Looking Ahead to 2003

- Concerned for soil moisture
- Performance of corn rootworm resistant hybrids
- Ethanol plants should result in lower basis and greater demand for corn grain. Shift in grain movement.
- Organic standards and implications for corn production in Wisconsin.
- Monitoring development of pest resistance in transgenic corn.

