

With-in Row Plant Spacing in Corn

Joe Lauer Corn Agronomist

University of Wisconsin-Extension Cooperative Extension

Lauer, © 1994-2001 University of Wisconsin – Agronomy

Background

- Recent interest in the grain yield response of corn to plant spacing variability.
 - ✓ Planter "tuning" services offered
- Pioneer agronomists estimate yield losses of between 5 and 10 bushels/A in corn stands with non-uniform spacing.
- Some advertisements in popular press claim up to 20% yield increases with properly tuned planters.

Objective

• To determine the relationship between corn yield response and plant spacing variability.

Previous Research on Corn Grain Yield Response to Plant Spacing Variation

- <u>lowa:</u> Non significant up to 6 inches standard deviation
 ✓ Erbach et al. (1972)
- Illinois: Non significant
 - ✓ Johnson and Mulvaney (1980)
 - ✓ Dungan et al., (1958): hills
- <u>Indiana:</u> Non significant and Significant (web)
 - ✓ Nielsen (1997)
 - Nielsen (web): Grain yield decreases 2.5 bu/A for each inch standard deviation > 2 inches

- Ontario: Non significant
 - ✓ Daynard et al. (1983, 1981, 1979)
- Kansas: Significant
 - ✓ Krall et al. (1977): 3.4 bu/A decrease for each inch increase standard deviation
 - ✓ Vanderlip et al (1988): grain yield decreased when standard deviation values were greater than 2.4 inches
- <u>Nebraska</u>: Non significant in hills
 - ✓ Kiesselbach and Weihing (1933)

Stand Characteristics of WI Corn Fields Evaluated for Stand Uniformity (n= 127)

	Average	Minimum - Maximum
Standard deviation (inches)	3.3	1.9 – 6.8
Doubles per 50 ft. (<u><</u> 2")	5.4	0.1 – 25.9
Gaps per 50 ft. (<u>></u> 12")	7.0	1.0 – 16.9
Average spacing (inches)	7.2	4.7 – 14.8
Planting rate (plants/A)	30,553	21,000 - 42,000
Actual plant density (plants/A)	29,727	21,916 - 44,605
Stand as % planted	97	78 - 121

Rankin, 2000

Corn Plant Spacing Variability 1999-2001 Materials and Methods

Target plant population 7 inches (30,000 plants/A) 1999: 14 inches (15,000 plants/A)

- Target standard deviation
 ✓ 0 to 12 inches
- Hybrid
 - ✓ P35R57: ARL, JAN, LAN
 ✓ C4111: FON, GAL, HAN
 ✓ N3030Bt: CHI, MAR, SEY, VAL

Plant Spacing Variability Treatments 1999 (2-Plant Pattern)

30,000 plants/A		Plant				Grain
	Plant	standard	Grain	Grain		test
Location	density	deviation	yield	moisture	Lodging	weight
Arlington	NS	**	NS	NS	NS	NS
Janesville	NS	**	NS	NS	NS	NS
Lancaster	†	†	NS	NS	NS	NS
Fond du Lac	NS	*	*	NS	NS	NS
Galesville	NS	*	NS	*	NS	NS
Hancock	NS	*	NS	NS	NS	NS
Chippewa Falls	NS	**	NS	NS	NS	NS
Marshfield	NS	*	NS	NS	NS	NS
Seymour	*	**	NS	NS	NS	NS
Valders	NS	**	NS	NS	NS	NS

**, *, and \dagger indicates significance at $P \leq 0.01$, 0.05 and 0.10, respectively

<u>Extension</u>

15,000 plants/A		Plant				Grain
	Plant	standard	Grain	Grain		test
Location	density	deviation	yield	moisture	Lodging	weight
Arlington	*	**	NS	NS	NS	NS
Janesville	NS	**	NS	NS	NS	NS
Lancaster	**	**	NS	NS	NS	NS
Fond du Lac	NS	**	NS	NS	t	NS
Galesville	NS	**	+	NS	NS	NS
Hancock	NS	**	NS	NS	NS	NS
Chippewa Falls	NS	**	NS	NS	NS	NS
Marshfield	NS	**	NS	NS	NS	+
Seymour	+	**	*	NS	NS	NS
Valders	†	**	NS	NS	NS	NS

**, *, and \dagger indicates significance at $P \leq 0.01$, 0.05 and 0.10, respectively

Corn yield response to plant spacing variation during 1999 and 2000. Values are individual plots from all locations (n= 20) and include control and 2-plant pattern treatments at 30000 plants/A.

30,000 plants/A		Plant				Grain
	Plant	standard	Grain	Grain		test
Location	density	deviation	yield	moisture	Lodging	weight
Arlington	**	**	**	NS	†	NS
Janesville	**	**	NS	NS	NS	NS
Lancaster	†	**	†	NS	NS	NS
Fond du Lac	t	**	*	NS	NS	NS
Galesville	NS	**	**	NS	NS	NS
Hancock	†	**	**	NS	NS	†
Chippewa Falls	+	**	NS	NS	t	NS
Marshfield	**	**	**	NS	NS	NS
Seymour	NS	**	**	NS	NS	NS
Valders	NS	*	**	NS	NS	NS

**, *, and † indicates significance at $P \leq 0.01$, 0.05 and 0.10, respectively

30,000 plants/A Location	Plant density	Plant standard deviation	Grain yield	Grain moisture	Lodging	Grain test weight
Arlington	**	**	NS	NS	NS	NS
Janesville	**	**	**	NS	NS	NS
Fond du Lac	*	**	+	NS	NS	NS
Galesville	**	**	**	NS	NS	†

**, *, and † indicates significance at $P \leq 0.01$, 0.05 and 0.10, respectively

Summary

- Grain yield decreased in 4- and 8-plant patterns where standard deviation of plant spacing treatments was greater than 5 to 7 inches.
 - Possibly due to competition and/or a population decrease (plant death)
- In most agronomic situations, plant spacing variation has no effect on grain yield or other agronomic measures as long as population is not affected.
 - ✓ Do planters need to be tuned?
 - ✓ Other types of plant variability?

Funded by the Wisconsin Corn Promotion Board

Lauer, © 1994-2001 University of Wisconsin – Agronomy