

Managing Corn to Maximize Ethanol/Biofuel Potential

Joe Lauer, Corn Agronomist

Corn has significant potential as a biofuel (Table 1). The highest potential ethanol yield from grain in Wisconsin has been recorded at 777 gallons/A (Lauer, 2007). The ethanol biofuel industry has dramatically changed corn markets in Wisconsin. Since 2002, nine ethanol plants have been constructed. Two out of five corn rows in a field get processed by an ethanol plant. A small increase in ethanol potential (gallons per bushel) is significant to ethanol plants. For example, a 1% increase in ethanol per bushel increases production of a 50 MG plant about 500,000 gallons ethanol. The objective of this project was to determine the influence of genetics and management on corn ethanol production from corn grain.

Between 2004 and 2008 the management factors of hybrid, plant density, date of planting, row spacing,

tillage and rotation were evaluated for grain ethanol production. Ethanol yield (gallons per acre) was closely associated with grain yield, so management practices that improve grain yield will maximize grain ethanol production. Often ethanol potential (gallons per bushel) is statistically significant, but biologically may not be important. The management decision that most influences ethanol potential is hybrid selection (3%). The management decisions of plant density, date of planting, tillage, rotation, and fungicide have little impact on ethanol potential (gallons per bushel).

Future research will concentrate on ethanol production from stover. Our hypothesis is that traits and management practices that improve silage quality for dairy cows will be most beneficial for ethanol production.

Figure 1. Corn Has Significant Potential for Biofuels

						ļ	Etha	nol Pr	oduc	tivity	Poten	tial
Grain Endosperm 2005 2010 2015 2020				Endo	sper					rain yield		
Bu/Ac Gal/Bu Gal/Ac	150 2.5 390	180 2.7 486	200 2.8 560	250 2.8 700	₩	ericarp)—	→18	3 Ga	l/Ac	re (2	010)
Grain Per	ricarp				Contraction of the local diversion of the local diversion of the local diversion of the local diversion of the				100	Gal	Acre	e (2010)
Ton/Ac Gal/Ton Gal/Ac	0 0 0	.45 40 18	.500 60 30	.625 90 56	- Street man	Stov	1200 1000		100	Jan		- (2010)
<u>Stover</u> Ton/Ac Gal/Ton Gal/Ac	0 0 0	2.5 40 100	2.75 60 165	3 90 270		Gallons / Acre	800 600 400					Stover Grain Fiber Endosperm
Source: Hitz, 2	2006				00 gallons / re by 2020?	Gallons	200	2006	2010	2015	2020	

University of Wisconsin – Extension • United States Department of Agriculture • Wisconsin Counties Cooperating Providing Equal Opportunities in Employment and Programming

Table 1. Theoretical ethanol potential and yield of four
commercial hybrids in Wisconsin during 2005 and 2006.
Values are means over three replications of four
environments (Lorenz et al., 2009)

chvirolinichts (Lorenz et al., 2007)						
Corn plant			Theoretical	ethanol †		
part	Bioma	ss yield	potential	yield		
	Percent	T DM/A	Gal/DM T	Gal/A		
Grain ‡	54	5.28	100	528§		
Cob	6	0.57	105	60		
Stover	40	3.90	99	384		
Total	100	9.76		972		

† Stover and ear ethanol estimated using the *in vitro* method of Weimer et al. (2005).

‡ Grain ethanol yield = 189 bu/A x 2.8 gal ethanol/bu = 528 gal/A of ethanol.

§ Ethanol yield does not include potential ethanol from the kernel pericarp and tip (0.2 T DM/A * 100 gal ethanol/T = 20 gal/A) and biodiesel produced from the germ (4.3% = 57 gal biodiesel/A assuming 8 lb oil = 1 gal biodiesel). Currently, these products are included in Dried Distiller Grains with Soluables (DDGS) which are approximately 30% of the grain and sold as livestock feed (Applegate et al., 2006).

Corn response to management for ethanol at Arlington, WI during 2008.

Table 2. Hybrid (n= 3 reps).

Table 2. Hybrid (II- 5 reps).					
Relative	Grain				
Maturity	yield	Ethar	nol		
Days	bu/A	Gal/bu	Gal/A		
82	200	2.91	582		
84	192	2.87	552		
85	214	2.86	612		
87	184	<u>2.85</u>	<u>526</u>		
90	214	2.87	616		
92	190	2.92	554		
96	223	2.91	647		
97	209	2.90	606		
99	236	2.92	691		
100	239	2.93	700		
104	203	2.87	583		
104	258	2.90	750		
108	234	2.90	678		
108	257	2.89	743		
112	237	2.89	686		
113	247	2.88	711		
LSD(0.10)	25	0.03	76		

Table 3. Fungicide (n= 24).

	Grain		
Fungicide	yield	Etha	nol
	bu/A	Gal/bu	Gal/A
Headline SBR	194	2.88	560
Quadris	201	2.89	579
Quilt	199	2.87	572
UTC	191	2.89	553
LSD(0.10)	NS	0.01	NS

Table 4. Plant density (n= 16).

Target	Plant	Grain		
density	density	yield	Etha	nol
plants/A	plants/A	bu/A	Gal/bu	Gal/A
14000	14267	176	2.87	505
20000	20928	202	2.85	575
26000	27746	231	2.87	663
32000	33459	236	2.89	681
38000	38983	238	2.90	689
44000	44097	233	2.90	676
50000	49147	233	2.89	676
56000	50315	233	2.90	677
LSD(0.10)	1435	8	0.01	24

Table 5. Planting date (n= 8).

	0			
	Planting	Grain		
	date	yield	Etha	nol
		bu/A	Gal/bu	Gal/A
	April 24	214	2.84	608
	May 01	220	2.84	624
	May 15	226	2.84	643
	June 02	179	2.84	510
	June 15	130	2.81	364
L	LSD(0.10)	17	NS	49

Table 6. Tillage (n= 84).

	Grain		
Tillage	Yield	Etha	nol
	bu/A	Gal/bu	Gal/A
Conventional	235	2.93	689
No-Till	213	2.91	620
LSD(0.10)	7	0.01	20

Table 7. Crop rotation (n= 24).

	Grain		
Rotation	yield	Etha	nol
	bu/A	Gal/bu	Gal/A
CC	178	2.88	511
CS	197	2.89	569
CSW	202	2.89	585
CWS	209	2.87	598
LSD(0.10)	NS	0.01	NS

Literature Cited

- Applegate, T., B. Richert, and D. Maier. 2006. Feed Ingredient Co-Products of Ethanol Fermentation from Corn. Purdue Extension BioEnergy ID-333:1-4.
- Lauer, J.G. 2007. Profits through Efficient Production Systems [Online]. Available at <u>http://corn.agronomy.wisc.edu/PEPS/</u> (verified August 26, 2009).
- Lorenz, A.J., J.G. Coors, N. de Leon, E.J. Wolfrum, B.R. Hames, A.D. Sluiter, and P.J. Weimer. 2009. Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol. Crop Sci 49:85-98.
- Weimer, P.J., B.S. Dien, T.L. Springer, and K.P. Vogel. 2005. In vitro gas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Appl. Microbiol. Biotechnol. 67:52-58.