June 30, 2009 Field Crops 28.4 – 68

## Managing Corn to Maximize Ethanol/Biofuel Potential

Joe Lauer, Corn Agronomist

## **Key Points**

- 1. Corn has significant potential as a biofuel. The highest potential ethanol yield from grain in Wisconsin has been recorded at 777 gallons/A (PEPS, 2007).
- 2. Ethanol production (gallons per acre) is driven by grain yield. Management practices that improve grain yield will maximize ethanol production from grain.
- 3. A small increase in ethanol quality (gallons per bushel) is significant to ethanol plants. For example, a 1% increase in ethanol per bushel increases production of a 50 MG plant about 500,000 gallons ethanol.
- 4. The management decision that most influences ethanol quality (gallons per bushel) is hybrid selection.
- 5. The management decisions of plant density, date of planting, tillage, rotation, and fungicide have little impact on ethanol quality (gallons per bushel).
- 6. Future research will concentrate on ethanol production from stover. Our hypothesis is that traits and management practices that improve silage quality for dairy cows will be most beneficial for ethanol production.

## **Corn Has Significant Potential for Biofuels**

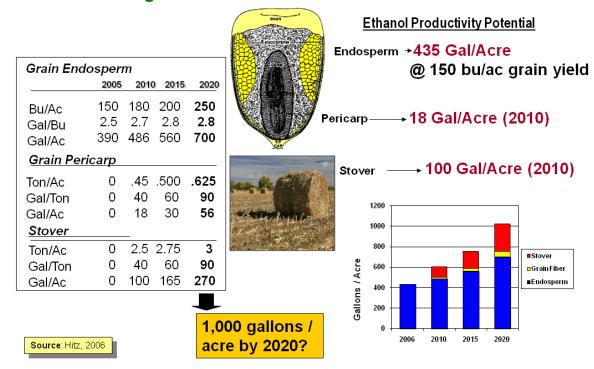



Table 1. Corn response to hybrid during 2008 at Arlington, WI (n= 3 reps).

| 2000 at 111111gton; VII (n= 3 Teps): |       |         |            |  |  |
|--------------------------------------|-------|---------|------------|--|--|
| Relative                             | Grain |         |            |  |  |
| Maturity                             | yield | Ethanol |            |  |  |
| Days                                 | bu/A  | Gal/bu  | Gal/A      |  |  |
| 82                                   | 200   | 2.91    | 582        |  |  |
| 84                                   | 192   | 2.87    | 552        |  |  |
| 85                                   | 214   | 2.86    | 612        |  |  |
| 87                                   | 184   | 2.86    | 526        |  |  |
| 90                                   | 214   | 2.87    | 616        |  |  |
| 92                                   | 190   | 2.92    | 554        |  |  |
| 96                                   | 223   | 2.91    | 647        |  |  |
| 97                                   | 209   | 2.90    | 606        |  |  |
| 99                                   | 236   | 2.92    | 691        |  |  |
| 100                                  | 239   | 2.93    | 700        |  |  |
| 104                                  | 203   | 2.87    | 583        |  |  |
| 104                                  | 258   | 2.90    | <b>750</b> |  |  |
| 108                                  | 234   | 2.90    | 678        |  |  |
| 108                                  | 257   | 2.89    | 743        |  |  |
| 112                                  | 237   | 2.89    | 686        |  |  |
| 113                                  | 247   | 2.88    | <b>711</b> |  |  |
| LSD(0.10)                            | 25    | 0.03    | 76         |  |  |

Table 2. Corn response to plant density during 2008 at Arlington, WI (n=16).

| Target    | Plant    | Grain |        |       |
|-----------|----------|-------|--------|-------|
| density   | density  | yield | Etha   | nol   |
| plants/A  | plants/A | bu/A  | Gal/bu | Gal/A |
| 14000     | 14267    | 176   | 2.87   | 505   |
| 20000     | 20928    | 202   | 2.85   | 575   |
| 26000     | 27746    | 231   | 2.87   | 663   |
| 32000     | 33459    | 236   | 2.89   | 681   |
| 38000     | 38983    | 238   | 2.90   | 689   |
| 44000     | 44097    | 233   | 2.90   | 676   |
| 50000     | 49147    | 233   | 2.89   | 676   |
| 56000     | 50315    | 233   | 2.90   | 677   |
| LSD(0.10) | 1435     | 8     | 0.01   | 24    |

Table 3. Corn response to planting date during 2008 at Arlington, WI (n= 8).

|                  |       | ) (     | - / - |
|------------------|-------|---------|-------|
| Planting         | Grain |         |       |
| date             | yield | Ethanol |       |
|                  | bu/A  | Gal/bu  | Gal/A |
| April 24         | 214   | 2.84    | 608   |
| <b>May 01</b>    | 220   | 2.84    | 624   |
| <b>May 15</b>    | 226   | 2.84    | 643   |
| June 02          | 179   | 2.84    | 510   |
| June 15          | 130   | 2.81    | 364   |
| <b>LSD(0.10)</b> | 17    | NS      | 49    |
|                  |       |         |       |

Table 4. Corn response to tillage during 2008 at Arlington, WI (n= 84).

|              | Grain |         |       |
|--------------|-------|---------|-------|
| Tillage      | Yield | Ethanol |       |
|              | bu/A  | Gal/bu  | Gal/A |
| Conventional | 235   | 2.93    | 689   |
| No-Till      | 213   | 2.91    | 620   |
| LSD(0.10)    | 7     | 0.01    | 20    |

Table 5. Corn response to rotation during 2008 at Arlington, WI (n= 24).

|           | Grain |         |       |
|-----------|-------|---------|-------|
| Rotation  | yield | Ethanol |       |
|           | bu/A  | Gal/bu  | Gal/A |
| CC        | 178   | 2.88    | 511   |
| CS        | 197   | 2.89    | 569   |
| CSW       | 202   | 2.89    | 585   |
| CWS       | 209   | 2.87    | 598   |
| LSD(0.10) | NS    | 0.01    | NS    |

Table 6. Corn response to fungicide during 2008 at Arlington, WI (n= 24).

| during 2000 at minigton, 111 (n=21). |       |         |            |  |
|--------------------------------------|-------|---------|------------|--|
| Grain                                |       |         |            |  |
| Fungicide                            | yield | Ethanol |            |  |
|                                      | bu/A  | Gal/bu  | Gal/A      |  |
| <b>Headline SBR</b>                  | 194   | 2.88    | <b>560</b> |  |
| Quadris                              | 201   | 2.89    | 579        |  |
| Quilt                                | 199   | 2.87    | 572        |  |
| UTC                                  | 191   | 2.89    | 553        |  |
| LSD(0.10)                            | NS    | 0.01    | NS         |  |